mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
gemma2: add sliding window mask (#8227)
* gemma2: add sliding window mask * fix data_swa uninitialized * better naming * add co-author Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com> * replace list with single tensor * update * llama : minor styling * convert : add sanity check for query_pre_attn_scalar * fix small typo in README --------- Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
0ddeff1023
commit
49122a873f
@ -218,7 +218,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||||||
**Tools:**
|
**Tools:**
|
||||||
|
|
||||||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||||||
[crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
@ -2369,6 +2369,12 @@ class Gemma2Model(Model):
|
|||||||
self.gguf_writer.add_final_logit_softcapping(
|
self.gguf_writer.add_final_logit_softcapping(
|
||||||
self.hparams["final_logit_softcapping"]
|
self.hparams["final_logit_softcapping"]
|
||||||
)
|
)
|
||||||
|
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
|
||||||
|
|
||||||
|
# sanity check
|
||||||
|
attn_scalar = self.hparams["query_pre_attn_scalar"]
|
||||||
|
if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]:
|
||||||
|
raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
del bid # unusem
|
del bid # unusem
|
||||||
|
@ -66,6 +66,7 @@ class Keys:
|
|||||||
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
||||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||||
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
||||||
|
SLIDING_WINDOW = "{arch}.attention.sliding_window"
|
||||||
|
|
||||||
class Rope:
|
class Rope:
|
||||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||||
|
@ -552,6 +552,9 @@ class GGUFWriter:
|
|||||||
def add_relative_attn_buckets_count(self, value: int) -> None:
|
def add_relative_attn_buckets_count(self, value: int) -> None:
|
||||||
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
|
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_sliding_window(self, value: int) -> None:
|
||||||
|
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
|
||||||
|
|
||||||
def add_pooling_type(self, value: PoolingType) -> None:
|
def add_pooling_type(self, value: PoolingType) -> None:
|
||||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||||
|
|
||||||
|
@ -317,6 +317,7 @@ enum llm_kv {
|
|||||||
LLM_KV_ATTENTION_Q_LORA_RANK,
|
LLM_KV_ATTENTION_Q_LORA_RANK,
|
||||||
LLM_KV_ATTENTION_KV_LORA_RANK,
|
LLM_KV_ATTENTION_KV_LORA_RANK,
|
||||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||||
|
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||||
|
|
||||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||||
LLM_KV_ROPE_FREQ_BASE,
|
LLM_KV_ROPE_FREQ_BASE,
|
||||||
@ -409,6 +410,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|||||||
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||||||
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||||||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||||
|
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||||
|
|
||||||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||||||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||||||
@ -2085,6 +2087,7 @@ struct llama_hparams {
|
|||||||
uint32_t n_head_kv;
|
uint32_t n_head_kv;
|
||||||
uint32_t n_layer;
|
uint32_t n_layer;
|
||||||
uint32_t n_rot;
|
uint32_t n_rot;
|
||||||
|
uint32_t n_swa = 0; // sliding window attention (SWA)
|
||||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||||
uint32_t n_ff;
|
uint32_t n_ff;
|
||||||
@ -2139,6 +2142,7 @@ struct llama_hparams {
|
|||||||
if (this->n_head_kv != other.n_head_kv) return true;
|
if (this->n_head_kv != other.n_head_kv) return true;
|
||||||
if (this->n_layer != other.n_layer) return true;
|
if (this->n_layer != other.n_layer) return true;
|
||||||
if (this->n_rot != other.n_rot) return true;
|
if (this->n_rot != other.n_rot) return true;
|
||||||
|
if (this->n_swa != other.n_swa) return true;
|
||||||
if (this->n_embd_head_k != other.n_embd_head_k) return true;
|
if (this->n_embd_head_k != other.n_embd_head_k) return true;
|
||||||
if (this->n_embd_head_v != other.n_embd_head_v) return true;
|
if (this->n_embd_head_v != other.n_embd_head_v) return true;
|
||||||
if (this->n_ff != other.n_ff) return true;
|
if (this->n_ff != other.n_ff) return true;
|
||||||
@ -2654,6 +2658,7 @@ struct llama_context {
|
|||||||
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
||||||
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
||||||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||||||
|
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||||||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||||||
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
||||||
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
||||||
@ -4709,6 +4714,8 @@ static void llm_load_hparams(
|
|||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_GEMMA2:
|
case LLM_ARCH_GEMMA2:
|
||||||
{
|
{
|
||||||
|
hparams.n_swa = 4096; // default value of gemma 2
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
|
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
|
||||||
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
|
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
|
||||||
@ -5419,6 +5426,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||||||
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
||||||
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||||
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
|
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||||
|
LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
|
||||||
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
|
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
|
||||||
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
|
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
|
||||||
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
||||||
@ -7780,6 +7788,7 @@ struct llm_build_context {
|
|||||||
lctx.inp_pos = nullptr;
|
lctx.inp_pos = nullptr;
|
||||||
lctx.inp_out_ids = nullptr;
|
lctx.inp_out_ids = nullptr;
|
||||||
lctx.inp_KQ_mask = nullptr;
|
lctx.inp_KQ_mask = nullptr;
|
||||||
|
lctx.inp_KQ_mask_swa = nullptr;
|
||||||
lctx.inp_K_shift = nullptr;
|
lctx.inp_K_shift = nullptr;
|
||||||
lctx.inp_mean = nullptr;
|
lctx.inp_mean = nullptr;
|
||||||
lctx.inp_cls = nullptr;
|
lctx.inp_cls = nullptr;
|
||||||
@ -7804,7 +7813,6 @@ struct llm_build_context {
|
|||||||
cb(lctx.inp_K_shift, "K_shift", -1);
|
cb(lctx.inp_K_shift, "K_shift", -1);
|
||||||
ggml_set_input(lctx.inp_K_shift);
|
ggml_set_input(lctx.inp_K_shift);
|
||||||
|
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||||
struct ggml_tensor * tmp =
|
struct ggml_tensor * tmp =
|
||||||
@ -7939,16 +7947,27 @@ struct llm_build_context {
|
|||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
|
struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
|
||||||
if (causal) {
|
lctx.inp_KQ_mask = causal
|
||||||
lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
|
||||||
} else {
|
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||||
lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
|
||||||
}
|
|
||||||
cb(lctx.inp_KQ_mask, "KQ_mask", -1);
|
cb(lctx.inp_KQ_mask, "KQ_mask", -1);
|
||||||
ggml_set_input(lctx.inp_KQ_mask);
|
ggml_set_input(lctx.inp_KQ_mask);
|
||||||
|
|
||||||
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
|
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
|
||||||
|
GGML_ASSERT(hparams.n_swa > 0);
|
||||||
|
|
||||||
|
lctx.inp_KQ_mask_swa = causal
|
||||||
|
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
|
||||||
|
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||||
|
cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
|
||||||
|
ggml_set_input(lctx.inp_KQ_mask_swa);
|
||||||
|
|
||||||
|
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * build_inp_mean() {
|
struct ggml_tensor * build_inp_mean() {
|
||||||
lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||||||
cb(lctx.inp_mean, "inp_mean", -1);
|
cb(lctx.inp_mean, "inp_mean", -1);
|
||||||
@ -11029,9 +11048,14 @@ struct llm_build_context {
|
|||||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
// gemma 2 requires different mask for layers using sliding window (SWA)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
|
||||||
|
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
// (il % 2) layers use SWA
|
||||||
|
struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
|
||||||
|
|
||||||
// norm
|
// norm
|
||||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
model.layers[il].attn_norm, NULL,
|
model.layers[il].attn_norm, NULL,
|
||||||
@ -11067,7 +11091,7 @@ struct llm_build_context {
|
|||||||
|
|
||||||
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||||
model.layers[il].wo, NULL,
|
model.layers[il].wo, NULL,
|
||||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||||
}
|
}
|
||||||
|
|
||||||
cur = llm_build_norm(ctx0, cur, hparams,
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
@ -12671,6 +12695,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
||||||
|
|
||||||
float * data = (float *) lctx.inp_KQ_mask->data;
|
float * data = (float *) lctx.inp_KQ_mask->data;
|
||||||
|
float * data_swa = nullptr;
|
||||||
|
|
||||||
|
if (lctx.inp_KQ_mask_swa) {
|
||||||
|
data_swa = (float *) lctx.inp_KQ_mask_swa->data;
|
||||||
|
}
|
||||||
|
|
||||||
// For causal attention, use only the previous KV cells
|
// For causal attention, use only the previous KV cells
|
||||||
// of the correct sequence for each token of the batch.
|
// of the correct sequence for each token of the batch.
|
||||||
@ -12692,6 +12721,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
|
data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
|
||||||
|
|
||||||
|
// may need to cut off old tokens for sliding window
|
||||||
|
if (data_swa) {
|
||||||
|
if (pos - lctx.kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
|
||||||
|
f = -INFINITY;
|
||||||
|
}
|
||||||
|
data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user