llama : quantize attention results

This commit is contained in:
Georgi Gerganov 2023-04-21 17:42:02 +03:00
parent 10f19c1121
commit 4b8d5e3890
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

View File

@ -1133,6 +1133,11 @@ static bool llama_eval_internal(
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// re-quantize K
if (ggml_is_quantized(model.layers[il].wk->type)) {
K = ggml_cpy(ctx0, K, ggml_new_tensor_3d(ctx0, model.layers[il].wk->type, n_embd/n_head, n_past + N, n_head));
}
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
@ -1157,6 +1162,11 @@ static bool llama_eval_internal(
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
#if 1
// re-quantize V
if (ggml_is_quantized(model.layers[il].wv->type) && ((n_past + N) % ggml_blck_size(model.layers[il].wv->type) == 0)) {
V = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, model.layers[il].wv->type, n_past + N, n_embd/n_head, n_head));
}
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy