mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
metal : parallel command buffer encoding (#1860)
* metal : parallel command buffer encoding * metal : determine number of command buffers based on gf->n_threads
This commit is contained in:
parent
6b8312e797
commit
4bfcc855ab
@ -55,6 +55,7 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
45
ggml-metal.m
45
ggml-metal.m
@ -287,15 +287,40 @@ void ggml_metal_graph_compute(
|
||||
struct ggml_cgraph * gf) {
|
||||
metal_printf("%s: evaluating graph\n", __func__);
|
||||
|
||||
// create multiple command buffers and enqueue them
|
||||
// then, we encode the graph into the command buffers in parallel
|
||||
|
||||
const int n_cb = gf->n_threads;
|
||||
|
||||
NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb];
|
||||
|
||||
for (int i = 0; i < n_cb; ++i) {
|
||||
command_buffers[i] = [ctx->queue commandBuffer];
|
||||
|
||||
// enqueue the command buffers in order to specify their execution order
|
||||
[command_buffers[i] enqueue];
|
||||
}
|
||||
|
||||
// TODO: is this the best way to start threads?
|
||||
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb;
|
||||
|
||||
dispatch_async(queue, ^{
|
||||
size_t offs_src0 = 0;
|
||||
size_t offs_src1 = 0;
|
||||
size_t offs_dst = 0;
|
||||
|
||||
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
|
||||
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
|
||||
|
||||
id<MTLComputeCommandEncoder> encoder = nil;
|
||||
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
//metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||
|
||||
for (int i = node_start; i < node_end; ++i) {
|
||||
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
||||
|
||||
struct ggml_tensor * src0 = gf->nodes[i]->src0;
|
||||
struct ggml_tensor * src1 = gf->nodes[i]->src1;
|
||||
@ -626,7 +651,6 @@ void ggml_metal_graph_compute(
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
@ -800,12 +824,11 @@ void ggml_metal_graph_compute(
|
||||
}
|
||||
|
||||
[command_buffer commit];
|
||||
[command_buffer waitUntilCompleted];
|
||||
|
||||
{
|
||||
const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
|
||||
UNUSED(time_elapsed);
|
||||
|
||||
metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
|
||||
});
|
||||
}
|
||||
|
||||
// wait for all threads to finish
|
||||
dispatch_barrier_sync(queue, ^{});
|
||||
|
||||
[command_buffers[n_cb - 1] waitUntilCompleted];
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user