From 4c8643dd6ea1a163bc5979cb69c1e7ab0975bc93 Mon Sep 17 00:00:00 2001 From: jameswu2014 <545426914@qq.com> Date: Fri, 15 Sep 2023 00:32:10 +0800 Subject: [PATCH] feature : support Baichuan serial models (#3009) --- convert-baichuan-hf-to-gguf.py | 292 +++++++++++++++++++++ gguf-py/gguf/gguf.py | 26 +- llama.cpp | 462 ++++++++++++++++++++++++++++++++- prompts/chat-with-baichuan.txt | 4 + 4 files changed, 781 insertions(+), 3 deletions(-) create mode 100755 convert-baichuan-hf-to-gguf.py create mode 100644 prompts/chat-with-baichuan.txt diff --git a/convert-baichuan-hf-to-gguf.py b/convert-baichuan-hf-to-gguf.py new file mode 100755 index 000000000..5b301de27 --- /dev/null +++ b/convert-baichuan-hf-to-gguf.py @@ -0,0 +1,292 @@ +#!/usr/bin/env python3 +# HF baichuan --> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import struct +import sys +from pathlib import Path +from typing import TYPE_CHECKING, Any +import itertools +import gguf +import numpy as np +import torch +from sentencepiece import SentencePieceProcessor # type: ignore[import] + + +if TYPE_CHECKING: + from typing import TypeAlias + +NDArray: TypeAlias = 'np.ndarray[Any, Any]' + +# reverse HF permute back to original pth layout + + +def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + +def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: + r = weights.shape[0] // 3 + return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) + +def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: + r = weights.shape[0] // 3 + return weights[r * n_part : r * n_part + r, ...] + +def count_model_parts(dir_model: str) -> int: + num_parts = 0 + + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + + return num_parts + + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) +print("hello print: ",hparams["architectures"][0]) +if hparams["architectures"][0] != "BaichuanForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) +print(f"num_parts:{num_parts}\n") +ARCH=gguf.MODEL_ARCH.BAICHUAN +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["num_hidden_layers"] +head_count = hparams["num_attention_heads"] + +if "num_key_value_heads" in hparams: + head_count_kv = hparams["num_key_value_heads"] +else: + head_count_kv = head_count + +if "_name_or_path" in hparams: + hf_repo = hparams["_name_or_path"] +else: + hf_repo = "" + +if "max_sequence_length" in hparams: + ctx_length = hparams["max_sequence_length"] +elif "max_position_embeddings" in hparams: + ctx_length = hparams["max_position_embeddings"] +elif "model_max_length" in hparams: + ctx_length = hparams["model_max_length"] +else: + print("gguf: can not find ctx length parameter.") + + sys.exit() + + +gguf_writer.add_name(dir_model.name) +gguf_writer.add_source_hf_repo(hf_repo) +gguf_writer.add_tensor_data_layout("Meta AI original pth") +gguf_writer.add_context_length(ctx_length) +gguf_writer.add_embedding_length(hparams["hidden_size"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) +gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) +gguf_writer.add_head_count(head_count) +gguf_writer.add_head_count_kv(head_count_kv) +gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + +if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: + if "type" in hparams["rope_scaling"]: + if hparams["rope_scaling"]["type"] == "linear": + gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) + + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytes] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +tokenizer_model_file = dir_model / 'tokenizer.model' +if not tokenizer_model_file.is_file(): + print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) + sys.exit(1) + +# vocab type sentencepiece +print("gguf: get sentencepiece tokenizer vocab, scores and token types") + +tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) + +for i in range(tokenizer.vocab_size()): + text: bytes + score: float + + piece = tokenizer.id_to_piece(i) + text = piece.encode("utf-8") + score = tokenizer.get_score(i) + + toktype = 1 # defualt to normal token type + if tokenizer.is_unknown(i): + toktype = 2 + if tokenizer.is_control(i): + toktype = 3 + + # toktype = 4 is user-defined = tokens from added_tokens.json + + if tokenizer.is_unused(i): + toktype = 5 + if tokenizer.is_byte(i): + toktype = 6 + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + +added_tokens_file = dir_model / 'added_tokens.json' +if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + addtokens_json = json.load(f) + + print("gguf: get added tokens") + + for key in addtokens_json: + tokens.append( key.encode("utf-8") ) + scores.append(-1000.0) + toktypes.append(4) # user-defined token type + + +gguf_writer.add_tokenizer_model("llama") +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + tmp=model_part + for i in range(block_count): + if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: + print(f"Unpacking and permuting layer {i}") + tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) + tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) + tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) + del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] + + for name in model_part.keys(): + data = model_part[name] + # we don't need these + if name.endswith(".rotary_emb.inv_freq"): + continue + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + gguf_writer.add_tensor(new_name, data) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index d377cd56d..bda13ac00 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -79,6 +79,7 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" class MODEL_ARCH(IntEnum): LLAMA : int = auto() FALCON : int = auto() + BAICHUAN:int = auto() GPT2 : int = auto() GPTJ : int = auto() GPTNEOX: int = auto() @@ -108,6 +109,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.FALCON: "falcon", + MODEL_ARCH.BAICHUAN:"baichuan", MODEL_ARCH.GPT2: "gpt2", MODEL_ARCH.GPTJ: "gptj", MODEL_ARCH.GPTNEOX: "gptneox", @@ -153,6 +155,22 @@ MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, + MODEL_ARCH.BAICHUAN: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, MODEL_ARCH.GPT2: { # TODO }, @@ -165,6 +183,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.BAICHUAN: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } @@ -187,7 +209,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf + "lm_head", # gpt2 mpt falcon llama-hf baichuan "output", # llama-pth ), @@ -195,7 +217,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 falcon - "model.norm", # llama-hf + "model.norm", # llama-hf baichuan "norm", # llama-pth ), diff --git a/llama.cpp b/llama.cpp index cbaf8edac..146605d44 100644 --- a/llama.cpp +++ b/llama.cpp @@ -155,6 +155,7 @@ static std::string format(const char * fmt, ...) { enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, + LLM_ARCH_BAICHUAN, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, @@ -169,6 +170,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN,"baichuan" }, }; enum llm_kv { @@ -309,6 +311,25 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_BAICHUAN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_FALCON, { @@ -1683,6 +1704,15 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_BAICHUAN: + { + GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; }; @@ -1923,7 +1953,6 @@ static void llm_load_tensors( const int64_t n_vocab = hparams.n_vocab; const auto tn = LLM_TN(model.arch); - switch (model.arch) { case LLM_ARCH_LLAMA: { @@ -1966,6 +1995,72 @@ static void llm_load_tensors( model.layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + + layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); + layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); + layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + + layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); + } + } + } break; + case LLM_ARCH_BAICHUAN: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + { + ggml_backend backend_norm; + ggml_backend backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT @@ -2542,6 +2637,367 @@ static struct ggml_cgraph * llm_build_llama( return gf; } + +static struct ggml_cgraph * llm_build_baichaun( + llama_context & lctx, + const llama_token * tokens, + const float * embd, + int n_tokens, + int n_past) { + + GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT + + const int N = n_tokens; + + const auto & model = lctx.model; + const auto & hparams = model.hparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = hparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const float freq_base = hparams.rope_freq_base; + const float freq_scale = hparams.rope_freq_scale; + const float norm_rms_eps = hparams.f_norm_rms_eps; + + const int n_gpu_layers = model.n_gpu_layers; + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + if (tokens) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); + + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); + } + } + + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + // + // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal + // in that case ggml_cuda_assign_buffers has no effect + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + + for (int il = 0; il < n_layer; ++il) { + ggml_format_name(inpL, "layer_inp_%d", il); + + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + struct ggml_tensor * inpSA = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_0"); + + // cur = cur*attn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); + offload_func(cur); + ggml_set_name(cur, "attention_norm_0"); + } + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + offload_func_kq(tmpk); + ggml_set_name(tmpk, "tmpk"); + + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + offload_func_kq(tmpq); + ggml_set_name(tmpq, "tmpq"); + + struct ggml_tensor * Kcur; + struct ggml_tensor * Qcur; + switch (model.type) { + case MODEL_7B: + Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); + Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); + break; + case MODEL_13B: + Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N); + Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N); + break; + default: + GGML_ASSERT(false); + } + + offload_func_kq(Kcur); + ggml_set_name(Kcur, "Kcur"); + + offload_func_kq(Qcur); + ggml_set_name(Qcur, "Qcur"); + + // store key and value to memory + { + // compute the transposed [N, n_embd] V matrix + + struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + offload_func_v(tmpv); + ggml_set_name(tmpv, "tmpv"); + + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N)); + offload_func_v(Vcur); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past)); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v)); + offload_func_v(v); + ggml_set_name(v, "v"); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_past + N, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + offload_func_kq(K); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_past + N, N, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + struct ggml_tensor * KQ_masked; + struct ggml_tensor * KQ_scaled_alibi; + + switch (model.type) { + case MODEL_7B: + KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + break; + case MODEL_13B: + KQ_scaled_alibi =ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); + break; + default: + GGML_ASSERT(false); + } + // KQ_masked = mask_past(KQ_scaled) + // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); + // offload_func_kq(KQ_masked); + // ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_past + N, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + +#if 1 + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); +#else + // make V contiguous in memory to speed up the matmul, however we waste time on the copy + // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation + // is there a better way? + struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head)); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); +#endif + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, N) + cur = ggml_cpy(ctx0, + KQV_merged, + ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model.layers[il].wo, + cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + offload_func(inpFF); + ggml_set_name(inpFF, "inpFF"); + + // feed-forward network + { + // norm + { + cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_1"); + + // cur = cur*ffn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + ggml_set_name(cur, "ffn_norm"); + } + + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model.layers[il].w3, + cur); + offload_func(tmp); + ggml_set_name(tmp, "result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w1, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w1"); + + // SILU activation + cur = ggml_silu(ctx0, cur); + offload_func(cur); + ggml_set_name(cur, "silu"); + + cur = ggml_mul(ctx0, cur, tmp); + offload_func(cur); + ggml_set_name(cur, "silu_x_result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w2, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w2"); + } + + cur = ggml_add(ctx0, cur, inpFF); + offload_func(cur); + ggml_set_name(cur, "inpFF_+_result_w2"); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); + offload_func_nr(cur); + ggml_set_name(cur, "rms_norm_2"); + + // cur = cur*norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.output_norm); + // offload_func_nr(cur); // TODO CPU + GPU mirrored backend + ggml_set_name(cur, "result_norm"); + } + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llm_build_falcon( llama_context & lctx, const llama_token * tokens, @@ -2864,6 +3320,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past); } break; + case LLM_ARCH_BAICHUAN: + { + result = llm_build_baichaun(lctx, tokens, embd, n_tokens, n_past); + } break; case LLM_ARCH_FALCON: { result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past); diff --git a/prompts/chat-with-baichuan.txt b/prompts/chat-with-baichuan.txt new file mode 100644 index 000000000..11626b692 --- /dev/null +++ b/prompts/chat-with-baichuan.txt @@ -0,0 +1,4 @@ +以下内容为人类用户与与一位智能助手的对话。 + +用户:你好! +助手: