diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 8c2712308..fead903c3 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -7579,8 +7579,7 @@ static void ggml_cuda_op_mul_mat_cublas( const int compute_capability = g_device_caps[id].cc; - if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { - //printf("this branch\n"); + if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) { // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 cuda_pool_alloc src0_as_f16; if (src0->type != GGML_TYPE_F16) { @@ -7601,23 +7600,44 @@ static void ggml_cuda_op_mul_mat_cublas( to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); } const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); - cuda_pool_alloc dst_f16(row_diff*src1_ncols); - const half alpha_f16 = 1.0f; - const half beta_f16 = 0.0f; + switch (dst->op_params[0]) { + case GGML_PREC_DEFAULT: + { + cuda_pool_alloc dst_f16(row_diff*src1_ncols); - CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); - CUBLAS_CHECK( - cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, - row_diff, src1_ncols, ne10, - &alpha_f16, src0_ptr, CUDA_R_16F, ne00, - src1_ptr, CUDA_R_16F, ne10, - &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, - CUBLAS_COMPUTE_16F, - CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); + } break; + case GGML_PREC_F32: + { + const float alpha_f32 = 1.0f; + const float beta_f32 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f32, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f32, dst_dd_i, CUDA_R_32F, ldc, + CUBLAS_COMPUTE_32F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } break; + } } else { cuda_pool_alloc src0_ddq_as_f32; cuda_pool_alloc src1_ddq_as_f32; @@ -7635,7 +7655,7 @@ static void ggml_cuda_op_mul_mat_cublas( to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); } - const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); + const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); const float alpha = 1.0f; @@ -9234,6 +9254,20 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { } void ggml_cuda_free_data(struct ggml_tensor * tensor) { + // print current mem usage using cudaMemGetInfo + // TODO: this is a hack - need better solution + { + size_t free; + size_t total; + CUDA_CHECK(cudaMemGetInfo(&free, &total)); + + static size_t used = 0; + if (used < total - free) { + printf("CUDA: used %zu MB, free %zu MB\n", (total - free)/1024/1024, free/1024/1024); + used = total - free; + } + } + if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) { return; } diff --git a/ggml.c b/ggml.c index bcec200f6..4004feb3b 100644 --- a/ggml.c +++ b/ggml.c @@ -4077,6 +4077,12 @@ struct ggml_tensor * ggml_mul_mat( const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + // TMP: force f32 precision + { + const int32_t prec_i32 = GGML_PREC_F32; + ggml_set_op_params_i32(result, 0, prec_i32); + } + result->op = GGML_OP_MUL_MAT; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a;