mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821)
This commit is contained in:
parent
c7a0ad8ec9
commit
4d4d2366fc
@ -786,7 +786,7 @@ And after 4.45 hours, you will have the final perplexity.
|
|||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
|
||||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||||
|
|
||||||
Here is an example of a few-shot interaction, invoked with the command
|
Here is an example of a few-shot interaction, invoked with the command
|
||||||
|
|
||||||
@ -850,7 +850,7 @@ Sample run:
|
|||||||
```
|
```
|
||||||
== Running in interactive mode. ==
|
== Running in interactive mode. ==
|
||||||
- Press Ctrl+C to interject at any time.
|
- Press Ctrl+C to interject at any time.
|
||||||
- Press Return to return control to LLaMa.
|
- Press Return to return control to LLaMA.
|
||||||
- If you want to submit another line, end your input in '\'.
|
- If you want to submit another line, end your input in '\'.
|
||||||
|
|
||||||
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
||||||
|
@ -373,7 +373,7 @@ def handle_metadata(cfg, hp):
|
|||||||
raise ValueError('Unable to load metadata')
|
raise ValueError('Unable to load metadata')
|
||||||
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
||||||
vocab_factory = convert.VocabFactory(vocab_path)
|
vocab_factory = convert.VocabFactory(vocab_path)
|
||||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
|
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
|
||||||
convert.check_vocab_size(params, vocab)
|
convert.check_vocab_size(params, vocab)
|
||||||
return params, vocab, special_vocab
|
return params, vocab, special_vocab
|
||||||
|
|
||||||
@ -398,8 +398,8 @@ def handle_args():
|
|||||||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||||
parser.add_argument("--vocab-dir", type=Path,
|
parser.add_argument("--vocab-dir", type=Path,
|
||||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
|
parser.add_argument("--vocabtype", default="spm,hfft",
|
||||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
72
convert.py
72
convert.py
@ -1282,35 +1282,32 @@ def load_some_model(path: Path) -> ModelPlus:
|
|||||||
|
|
||||||
|
|
||||||
class VocabFactory:
|
class VocabFactory:
|
||||||
|
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
|
||||||
|
|
||||||
def __init__(self, path: Path):
|
def __init__(self, path: Path):
|
||||||
self.path = path
|
self.path = path
|
||||||
self.files: dict[str, Path | None] = {
|
self.file_paths = self._detect_files()
|
||||||
"tokenizer.model": None,
|
print(f"Found vocab files: {self.file_paths}")
|
||||||
"vocab.json": None,
|
|
||||||
"tokenizer.json": None,
|
|
||||||
}
|
|
||||||
self._detect_files()
|
|
||||||
|
|
||||||
def _detect_files(self):
|
def _detect_files(self) -> dict[str, Path | None]:
|
||||||
for file in self.files.keys():
|
def locate(file: str) -> Path | None:
|
||||||
file_path = self.path / file
|
if (path := self.path / file).exists():
|
||||||
parent_file_path = self.path.parent / file
|
return path
|
||||||
if file_path.exists():
|
if (path := self.path.parent / file).exists():
|
||||||
self.files[file] = file_path
|
return path
|
||||||
elif parent_file_path.exists():
|
return None
|
||||||
self.files[file] = parent_file_path
|
|
||||||
print(f"Found vocab files: {self.files}")
|
|
||||||
|
|
||||||
def _select_file(self, vocabtype: str | None) -> Path:
|
return {vt: locate(f) for vt, f in self._FILES.items()}
|
||||||
if vocabtype in ["spm", "bpe"]:
|
|
||||||
for file_key in self.files.keys():
|
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
|
||||||
if (file := self.files[file_key]) is not None:
|
for vtype in vocab_types:
|
||||||
return file
|
try:
|
||||||
raise FileNotFoundError(f"{vocabtype} vocab not found.")
|
path = self.file_paths[vtype]
|
||||||
if vocabtype == "hfft":
|
except KeyError:
|
||||||
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
|
||||||
return self.path
|
if path is not None:
|
||||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
return vtype, path
|
||||||
|
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
|
||||||
|
|
||||||
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||||
load_merges = vocabtype == "bpe"
|
load_merges = vocabtype == "bpe"
|
||||||
@ -1322,30 +1319,30 @@ class VocabFactory:
|
|||||||
n_vocab=n_vocab,
|
n_vocab=n_vocab,
|
||||||
)
|
)
|
||||||
|
|
||||||
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||||
path = self._select_file(vocabtype)
|
vocab_type, path = self._select_file(vocab_types)
|
||||||
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
|
||||||
|
|
||||||
added_tokens_path = path.parent / "added_tokens.json"
|
added_tokens_path = path.parent / "added_tokens.json"
|
||||||
vocab: Vocab
|
vocab: Vocab
|
||||||
if vocabtype == "bpe":
|
if vocab_type == "bpe":
|
||||||
vocab = BpeVocab(
|
vocab = BpeVocab(
|
||||||
path, added_tokens_path if added_tokens_path.exists() else None
|
path, added_tokens_path if added_tokens_path.exists() else None
|
||||||
)
|
)
|
||||||
elif vocabtype == "spm":
|
elif vocab_type == "spm":
|
||||||
vocab = SentencePieceVocab(
|
vocab = SentencePieceVocab(
|
||||||
path, added_tokens_path if added_tokens_path.exists() else None
|
path, added_tokens_path if added_tokens_path.exists() else None
|
||||||
)
|
)
|
||||||
elif vocabtype == "hfft":
|
elif vocab_type == "hfft":
|
||||||
vocab = HfVocab(
|
vocab = HfVocab(
|
||||||
path, added_tokens_path if added_tokens_path.exists() else None
|
path.parent, added_tokens_path if added_tokens_path.exists() else None
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
raise ValueError(vocab_type)
|
||||||
# FIXME: Respect --vocab-dir?
|
# FIXME: Respect --vocab-dir?
|
||||||
special_vocab = self._create_special_vocab(
|
special_vocab = self._create_special_vocab(
|
||||||
vocab,
|
vocab,
|
||||||
vocabtype,
|
vocab_type,
|
||||||
model_parent_path,
|
model_parent_path,
|
||||||
)
|
)
|
||||||
return vocab, special_vocab
|
return vocab, special_vocab
|
||||||
@ -1379,15 +1376,14 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||||
# We currently only support Q8_0 output on little endian systems.
|
# We currently only support Q8_0 output on little endian systems.
|
||||||
output_choices.append("q8_0")
|
output_choices.append("q8_0")
|
||||||
vocab_types = ["spm", "bpe", "hfft"]
|
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
|
||||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
|
||||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
|
||||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||||
@ -1448,7 +1444,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
model_parent_path = model_plus.paths[0].parent
|
model_parent_path = model_plus.paths[0].parent
|
||||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||||
vocab_factory = VocabFactory(vocab_path)
|
vocab_factory = VocabFactory(vocab_path)
|
||||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
|
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
|
||||||
|
|
||||||
if args.vocab_only:
|
if args.vocab_only:
|
||||||
if not args.outfile:
|
if not args.outfile:
|
||||||
|
@ -378,10 +378,10 @@ int main(int argc, char ** argv) {
|
|||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
const char *control_message;
|
const char *control_message;
|
||||||
if (params.multiline_input) {
|
if (params.multiline_input) {
|
||||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
||||||
" - To return control without starting a new line, end your input with '/'.\n";
|
" - To return control without starting a new line, end your input with '/'.\n";
|
||||||
} else {
|
} else {
|
||||||
control_message = " - Press Return to return control to LLaMa.\n"
|
control_message = " - Press Return to return control to LLaMA.\n"
|
||||||
" - To return control without starting a new line, end your input with '/'.\n"
|
" - To return control without starting a new line, end your input with '/'.\n"
|
||||||
" - If you want to submit another line, end your input with '\\'.\n";
|
" - If you want to submit another line, end your input with '\\'.\n";
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user