sync : ggml (SD ops, tests, kernels) (#4444)

* sync : ggml (SD ops, tests, kernels)

ggml-ci

* cuda : restore im2col

ggml-ci

* metal : fix accuracy of dequantization kernels

ggml-ci

* cuda : restore correct im2col

ggml-ci

* metal : try to fix moe test by reducing expert size

ggml-ci

* cuda : fix bin bcast when src1 and dst have different types

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Georgi Gerganov 2023-12-13 21:54:54 +02:00 committed by GitHub
parent 70f806b821
commit 4d98d9a656
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1334 additions and 130 deletions

View File

@ -439,6 +439,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_GELU_BLOCK_SIZE 256 #define CUDA_GELU_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_TANH_BLOCK_SIZE 256
#define CUDA_RELU_BLOCK_SIZE 256 #define CUDA_RELU_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256 #define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32 #define CUDA_CPY_BLOCK_SIZE 32
@ -451,6 +452,11 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_QUANTIZE_BLOCK_SIZE 256 #define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
#define CUDA_GET_ROWS_BLOCK_SIZE 256 #define CUDA_GET_ROWS_BLOCK_SIZE 256
#define CUDA_UPSCALE_BLOCK_SIZE 256
#define CUDA_CONCAT_BLOCK_SIZE 256
#define CUDA_PAD_BLOCK_SIZE 256
#define CUDA_ACC_BLOCK_SIZE 256
#define CUDA_IM2COL_BLOCK_SIZE 256
// dmmv = dequantize_mul_mat_vec // dmmv = dequantize_mul_mat_vec
#ifndef GGML_CUDA_DMMV_X #ifndef GGML_CUDA_DMMV_X
@ -612,6 +618,24 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
} }
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset) {
const int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
int src1_idx = i - offset;
int oz = src1_idx / nb2;
int oy = (src1_idx - (oz * nb2)) / nb1;
int ox = src1_idx % nb1;
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
} else {
dst[i] = x[i];
}
}
static __global__ void gelu_f32(const float * x, float * dst, const int k) { static __global__ void gelu_f32(const float * x, float * dst, const int k) {
const float GELU_COEF_A = 0.044715f; const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
@ -634,6 +658,23 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] / (1.0f + expf(-x[i])); dst[i] = x[i] / (1.0f + expf(-x[i]));
} }
static __global__ void gelu_quick_f32(const float *x, float *dst, int k) {
const float GELU_QUICK_COEF = -1.702f;
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
}
static __global__ void tanh_f32(const float *x, float *dst, int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = tanhf(x[i]);
}
static __global__ void relu_f32(const float * x, float * dst, const int k) { static __global__ void relu_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -643,6 +684,14 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
dst[i] = fmaxf(x[i], 0); dst[i] = fmaxf(x[i], 0);
} }
static __global__ void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
}
static __global__ void sqr_f32(const float * x, float * dst, const int k) { static __global__ void sqr_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -688,6 +737,132 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c
} }
} }
static __global__ void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (blockIdx.z < ne02) { // src0
int offset_src =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx +
blockIdx.y * ne0 +
(blockIdx.z - ne02) * ne0 * gridDim.y;
dst[offset_dst] = y[offset_src];
}
}
static __global__ void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor) {
int ne0 = ne00 * scale_factor;
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
int i00 = nidx / scale_factor;
int i01 = blockIdx.y / scale_factor;
int offset_src =
i00 +
i01 * ne00 +
blockIdx.z * nb02;
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
dst[offset_dst] = x[offset_src];
}
static __global__ void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02) {
int offset_src =
nidx +
blockIdx.y * ne00 +
blockIdx.z * ne00 * ne01;
dst[offset_dst] = x[offset_src];
} else {
dst[offset_dst] = 0.0f;
}
}
template <int block_size>
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
int start = blockIdx.x * group_size;
int end = start + group_size;
start += threadIdx.x;
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
float variance = tmp / group_size;
float scale = rsqrtf(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
template <int block_size> template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
@ -5071,19 +5246,30 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
static __global__ void im2col_f32_f16( static __global__ void im2col_f32_f16(
const float * x, half * dst, const float * x, half * dst,
int ofs0, int ofs1, int IW, int IH, int CHW, int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
int s0, int s1, int p0, int p1, int d0, int d1) { int s0, int s1, int p0, int p1, int d0, int d1) {
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0; const int i = threadIdx.x + blockIdx.x * blockDim.x;
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1; if (i >= pelements) {
return;
}
const int ksize = OW * (KH > 1 ? KW : 1);
const int kx = i / ksize;
const int kd = kx * ksize;
const int ky = (i - kd) / OW;
const int ix = i % OW;
const int iiw = ix * s0 + kx * d0 - p0;
const int iih = blockIdx.y * s1 + ky * d1 - p1;
const int offset_dst = const int offset_dst =
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW + (blockIdx.y * OW + ix) * CHW +
(blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z); (blockIdx.z * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = __float2half(0.0f); dst[offset_dst] = __float2half(0.0f);
} else { } else {
const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1; const int offset_src = blockIdx.z * offset_delta;
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]); dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
} }
} }
@ -5220,10 +5406,10 @@ struct bin_bcast_cuda {
size_t nb12 = cnb1[2]; size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3]; size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(src1_t); size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(src1_t); size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(src1_t); size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(src1_t); size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t); size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t); size_t s11 = nb11 / sizeof(src1_t);
@ -5269,6 +5455,13 @@ struct bin_bcast_cuda {
} }
}; };
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
}
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k); gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@ -5279,11 +5472,26 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k); silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
} }
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k); relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
} }
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
}
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE; const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k); sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@ -5300,6 +5508,38 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
} }
} }
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
static const float eps = 1e-6f;
if (group_size < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
} else {
const dim3 block_dims(1024, 1, 1);
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
}
}
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2);
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
}
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) {
int ne0 = (ne00 * scale_factor);
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02);
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
}
static void pad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02,
const int ne0, const int ne1, const int ne2, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02);
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0); GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) { if (ncols < 1024) {
@ -6262,13 +6502,14 @@ static void soft_max_f32_cuda(const float * x, const float * y, float * dst, con
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
} }
static void im2col_f32_f16_cuda(const float * x, half * dst, static void im2col_f32_f16_cuda(const float* x, half* dst,
int OH, int IW, int IH, int OW, int IC, int IW, int IH, int OW, int OH, int KW, int KH, int IC,
int KH, int KW, int N, int ofs0, int ofs1, int offset_delta,
int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) { int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
dim3 block_nums(IC, OH, OW); const int parallel_elements = OW * KW * KH;
dim3 block_dims(N, KH, KW); const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1); dim3 block_nums(num_blocks, OH, IC);
im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
} }
// buffer pool for cuda // buffer pool for cuda
@ -6615,6 +6856,25 @@ inline void ggml_cuda_op_add(
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream); ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
} }
inline void ggml_cuda_op_acc(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
(void) dst;
}
inline void ggml_cuda_op_mul( inline void ggml_cuda_op_mul(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -6657,6 +6917,34 @@ inline void ggml_cuda_op_silu(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_gelu_quick(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_tanh(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_relu( inline void ggml_cuda_op_relu(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -6671,6 +6959,23 @@ inline void ggml_cuda_op_relu(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_leaky_relu(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_sqr( inline void ggml_cuda_op_sqr(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -6705,6 +7010,71 @@ inline void ggml_cuda_op_norm(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_group_norm(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_concat(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
}
(void) src1;
(void) dst;
}
inline void ggml_cuda_op_upscale(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
const int scale_factor = dst->op_params[0];
upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
(void) src1;
(void) dst;
}
inline void ggml_cuda_op_pad(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
pad_f32_cuda(src0_dd, dst_dd,
src0->ne[0], src0->ne[1], src0->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
(void) src1;
(void) dst;
}
inline void ggml_cuda_op_rms_norm( inline void ggml_cuda_op_rms_norm(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -7219,7 +7589,6 @@ inline void ggml_cuda_op_im2col(
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int64_t N = src1->ne[is_2D ? 3 : 2];
const int64_t IC = src1->ne[is_2D ? 2 : 1]; const int64_t IC = src1->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? src1->ne[1] : 1; const int64_t IH = is_2D ? src1->ne[1] : 1;
const int64_t IW = src1->ne[0]; const int64_t IW = src1->ne[0];
@ -7230,17 +7599,15 @@ inline void ggml_cuda_op_im2col(
const int64_t OH = is_2D ? dst->ne[2] : 1; const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1]; const int64_t OW = dst->ne[1];
const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32 const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
OH, IW, IH, OW, IC, KH, KW, N,
ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream);
(void) src0; (void) src0;
(void) src0_dd; (void) src0_dd;
} }
inline void ggml_cuda_op_sum_rows( inline void ggml_cuda_op_sum_rows(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -7789,6 +8156,10 @@ static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, gg
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
} }
static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
}
static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
} }
@ -7805,10 +8176,22 @@ static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, g
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
} }
static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
}
static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
}
static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
} }
static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
}
static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
} }
@ -7817,6 +8200,22 @@ static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, g
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
} }
static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
}
static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
}
static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
}
static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
}
static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
} }
@ -8809,6 +9208,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_ADD: case GGML_OP_ADD:
func = ggml_cuda_add; func = ggml_cuda_add;
break; break;
case GGML_OP_ACC:
func = ggml_cuda_acc;
break;
case GGML_OP_MUL: case GGML_OP_MUL:
func = ggml_cuda_mul; func = ggml_cuda_mul;
break; break;
@ -8823,6 +9225,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
func = ggml_cuda_silu; func = ggml_cuda_silu;
break; break;
case GGML_UNARY_OP_GELU_QUICK:
func = ggml_cuda_gelu_quick;
break;
case GGML_UNARY_OP_TANH:
func = ggml_cuda_tanh;
break;
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
func = ggml_cuda_relu; func = ggml_cuda_relu;
break; break;
@ -8833,6 +9241,21 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_NORM: case GGML_OP_NORM:
func = ggml_cuda_norm; func = ggml_cuda_norm;
break; break;
case GGML_OP_GROUP_NORM:
func = ggml_cuda_group_norm;
break;
case GGML_OP_CONCAT:
func = ggml_cuda_concat;
break;
case GGML_OP_UPSCALE:
func = ggml_cuda_upscale;
break;
case GGML_OP_PAD:
func = ggml_cuda_pad;
break;
case GGML_OP_LEAKY_RELU:
func = ggml_cuda_leaky_relu;
break;
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
func = ggml_cuda_rms_norm; func = ggml_cuda_rms_norm;
break; break;
@ -8855,9 +9278,6 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
func = ggml_cuda_sqr; func = ggml_cuda_sqr;
break; break;
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
if (!any_on_device) {
return false;
}
func = ggml_cuda_clamp; func = ggml_cuda_clamp;
break; break;
case GGML_OP_CPY: case GGML_OP_CPY:
@ -8866,6 +9286,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_CONT: case GGML_OP_CONT:
func = ggml_cuda_dup; func = ggml_cuda_dup;
break; break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE: case GGML_OP_RESHAPE:
case GGML_OP_VIEW: case GGML_OP_VIEW:
case GGML_OP_PERMUTE: case GGML_OP_PERMUTE:
@ -9285,6 +9706,8 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
return true; return true;
default: default:
return false; return false;
@ -9369,6 +9792,12 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_CONCAT:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_LEAKY_RELU:
return true; return true;
default: default:
return false; return false;

View File

@ -66,9 +66,11 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(div_row); GGML_METAL_DECL_KERNEL(div_row);
GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(scale);
GGML_METAL_DECL_KERNEL(scale_4); GGML_METAL_DECL_KERNEL(scale_4);
GGML_METAL_DECL_KERNEL(silu); GGML_METAL_DECL_KERNEL(tanh);
GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(relu);
GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(gelu);
GGML_METAL_DECL_KERNEL(gelu_quick);
GGML_METAL_DECL_KERNEL(silu);
GGML_METAL_DECL_KERNEL(soft_max); GGML_METAL_DECL_KERNEL(soft_max);
GGML_METAL_DECL_KERNEL(soft_max_4); GGML_METAL_DECL_KERNEL(soft_max_4);
GGML_METAL_DECL_KERNEL(diag_mask_inf); GGML_METAL_DECL_KERNEL(diag_mask_inf);
@ -86,6 +88,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q5_K); GGML_METAL_DECL_KERNEL(get_rows_q5_K);
GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(get_rows_q6_K);
GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(group_norm);
GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32); GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16); GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
@ -145,8 +148,11 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rope_f16); GGML_METAL_DECL_KERNEL(rope_f16);
GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(im2col_f16); GGML_METAL_DECL_KERNEL(im2col_f16);
GGML_METAL_DECL_KERNEL(upscale_f32);
GGML_METAL_DECL_KERNEL(pad_f32);
GGML_METAL_DECL_KERNEL(argsort_f32_i32_asc); GGML_METAL_DECL_KERNEL(argsort_f32_i32_asc);
GGML_METAL_DECL_KERNEL(argsort_f32_i32_desc); GGML_METAL_DECL_KERNEL(argsort_f32_i32_desc);
GGML_METAL_DECL_KERNEL(leaky_relu_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_q8_0); GGML_METAL_DECL_KERNEL(cpy_f32_q8_0);
@ -334,9 +340,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(div_row); GGML_METAL_ADD_KERNEL(div_row);
GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(scale);
GGML_METAL_ADD_KERNEL(scale_4); GGML_METAL_ADD_KERNEL(scale_4);
GGML_METAL_ADD_KERNEL(silu); GGML_METAL_ADD_KERNEL(tanh);
GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(relu);
GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(gelu);
GGML_METAL_ADD_KERNEL(gelu_quick);
GGML_METAL_ADD_KERNEL(silu);
GGML_METAL_ADD_KERNEL(soft_max); GGML_METAL_ADD_KERNEL(soft_max);
GGML_METAL_ADD_KERNEL(soft_max_4); GGML_METAL_ADD_KERNEL(soft_max_4);
GGML_METAL_ADD_KERNEL(diag_mask_inf); GGML_METAL_ADD_KERNEL(diag_mask_inf);
@ -354,6 +362,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(get_rows_q5_K); GGML_METAL_ADD_KERNEL(get_rows_q5_K);
GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(get_rows_q6_K);
GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(group_norm);
GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32); GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16); GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
@ -415,8 +424,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(im2col_f16); GGML_METAL_ADD_KERNEL(im2col_f16);
GGML_METAL_ADD_KERNEL(upscale_f32);
GGML_METAL_ADD_KERNEL(pad_f32);
GGML_METAL_ADD_KERNEL(argsort_f32_i32_asc); GGML_METAL_ADD_KERNEL(argsort_f32_i32_asc);
GGML_METAL_ADD_KERNEL(argsort_f32_i32_desc); GGML_METAL_ADD_KERNEL(argsort_f32_i32_desc);
GGML_METAL_ADD_KERNEL(leaky_relu_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_q8_0); GGML_METAL_ADD_KERNEL(cpy_f32_q8_0);
@ -450,9 +462,11 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(div_row); GGML_METAL_DEL_KERNEL(div_row);
GGML_METAL_DEL_KERNEL(scale); GGML_METAL_DEL_KERNEL(scale);
GGML_METAL_DEL_KERNEL(scale_4); GGML_METAL_DEL_KERNEL(scale_4);
GGML_METAL_DEL_KERNEL(silu); GGML_METAL_DEL_KERNEL(tanh);
GGML_METAL_DEL_KERNEL(relu); GGML_METAL_DEL_KERNEL(relu);
GGML_METAL_DEL_KERNEL(gelu); GGML_METAL_DEL_KERNEL(gelu);
GGML_METAL_DEL_KERNEL(gelu_quick);
GGML_METAL_DEL_KERNEL(silu);
GGML_METAL_DEL_KERNEL(soft_max); GGML_METAL_DEL_KERNEL(soft_max);
GGML_METAL_DEL_KERNEL(soft_max_4); GGML_METAL_DEL_KERNEL(soft_max_4);
GGML_METAL_DEL_KERNEL(diag_mask_inf); GGML_METAL_DEL_KERNEL(diag_mask_inf);
@ -470,6 +484,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(get_rows_q5_K); GGML_METAL_DEL_KERNEL(get_rows_q5_K);
GGML_METAL_DEL_KERNEL(get_rows_q6_K); GGML_METAL_DEL_KERNEL(get_rows_q6_K);
GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(group_norm);
GGML_METAL_DEL_KERNEL(norm); GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32); GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16); GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
@ -531,8 +546,11 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32); GGML_METAL_DEL_KERNEL(alibi_f32);
GGML_METAL_DEL_KERNEL(im2col_f16); GGML_METAL_DEL_KERNEL(im2col_f16);
GGML_METAL_DEL_KERNEL(upscale_f32);
GGML_METAL_DEL_KERNEL(pad_f32);
GGML_METAL_DEL_KERNEL(argsort_f32_i32_asc); GGML_METAL_DEL_KERNEL(argsort_f32_i32_asc);
GGML_METAL_DEL_KERNEL(argsort_f32_i32_desc); GGML_METAL_DEL_KERNEL(argsort_f32_i32_desc);
GGML_METAL_DEL_KERNEL(leaky_relu_f32);
GGML_METAL_DEL_KERNEL(cpy_f32_f16); GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32); GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f32_q8_0); GGML_METAL_DEL_KERNEL(cpy_f32_q8_0);
@ -843,9 +861,11 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
switch (op->op) { switch (op->op) {
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) { switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
return true; return true;
default: default:
return false; return false;
@ -853,11 +873,11 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
case GGML_OP_NONE: case GGML_OP_NONE:
case GGML_OP_RESHAPE: case GGML_OP_RESHAPE:
case GGML_OP_VIEW: case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE: case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS: case GGML_OP_PERMUTE:
case GGML_OP_CONCAT: case GGML_OP_CONCAT:
case GGML_OP_ADD: case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
case GGML_OP_SCALE: case GGML_OP_SCALE:
@ -865,11 +885,15 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_NORM: case GGML_OP_NORM:
case GGML_OP_ALIBI: case GGML_OP_ALIBI:
case GGML_OP_ROPE: case GGML_OP_ROPE:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
return true; return true;
@ -902,8 +926,9 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
}; };
} }
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{ {
return op->ne[0] % 4 == 0; return op->ne[3] == 1;
} }
default: default:
return false; return false;
@ -979,7 +1004,10 @@ void ggml_metal_graph_compute(
} break; } break;
} }
GGML_ASSERT(ggml_metal_supports_op(dst)); if (!ggml_metal_supports_op(dst)) {
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op");
}
const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0;
@ -1076,6 +1104,8 @@ void ggml_metal_graph_compute(
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
{ {
const size_t offs = 0;
bool bcast_row = false; bool bcast_row = false;
int64_t nb = ne00; int64_t nb = ne00;
@ -1134,7 +1164,8 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27]; [encoder setBytes:&offs length:sizeof(offs) atIndex:27];
[encoder setBytes:&nb length:sizeof(nb) atIndex:28];
if (bcast_row) { if (bcast_row) {
const int64_t n = ggml_nelements(dst)/4; const int64_t n = ggml_nelements(dst)/4;
@ -1146,6 +1177,86 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} }
} break; } break;
case GGML_OP_ACC:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(dstt == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const size_t pnb1 = ((int32_t *) dst->op_params)[0];
const size_t pnb2 = ((int32_t *) dst->op_params)[1];
const size_t pnb3 = ((int32_t *) dst->op_params)[2];
const size_t offs = ((int32_t *) dst->op_params)[3];
const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
// run a separete kernel to cpy src->dst
// not sure how to avoid this
// TODO: make a simpler cpy_bytes kernel
const int nth = MIN(1024, ne00);
[encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
[encoder setComputePipelineState:ctx->pipeline_add];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_SCALE: case GGML_OP_SCALE:
{ {
GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
@ -1169,16 +1280,15 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) { switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_TANH:
{ {
[encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setComputePipelineState:ctx->pipeline_tanh];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
{ {
@ -1199,6 +1309,28 @@ void ggml_metal_graph_compute(
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0); GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
[encoder setComputePipelineState:ctx->pipeline_gelu_quick];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SILU:
{
[encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
default: default:
@ -1837,6 +1969,38 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
const float eps = 1e-6f; // TODO: temporarily hardcoded
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
int nth = 32; // SIMD width
//while (nth < ne00/4 && nth < 1024) {
// nth *= 2;
//}
[encoder setComputePipelineState:ctx->pipeline_group_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_NORM: case GGML_OP_NORM:
{ {
float eps; float eps;
@ -2006,6 +2170,65 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)]; [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
} break; } break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int sf = dst->op_params[0];
[encoder setComputePipelineState:ctx->pipeline_upscale_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_PAD:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_pad_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
@ -2027,6 +2250,22 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
} break; } break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
float slope;
memcpy(&slope, dst->op_params, sizeof(float));
[encoder setComputePipelineState:ctx->pipeline_leaky_relu_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_DUP: case GGML_OP_DUP:
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT: case GGML_OP_CONT:

View File

@ -79,6 +79,7 @@ kernel void kernel_add(
constant int64_t & nb1, constant int64_t & nb1,
constant int64_t & nb2, constant int64_t & nb2,
constant int64_t & nb3, constant int64_t & nb3,
constant int64_t & offs,
uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]], uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) { uint3 ntg[[threads_per_threadgroup]]) {
@ -90,9 +91,9 @@ kernel void kernel_add(
const int64_t i12 = i02 % ne12; const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11; const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i10 = i0 % ne10; const int i10 = i0 % ne10;
@ -204,7 +205,7 @@ kernel void kernel_add_row(
device const float4 * src0, device const float4 * src0,
device const float4 * src1, device const float4 * src1,
device float4 * dst, device float4 * dst,
constant int64_t & nb [[buffer(27)]], constant int64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % nb]; dst[tpig] = src0[tpig] + src1[tpig % nb];
} }
@ -213,7 +214,7 @@ kernel void kernel_mul_row(
device const float4 * src0, device const float4 * src0,
device const float4 * src1, device const float4 * src1,
device float4 * dst, device float4 * dst,
constant int64_t & nb [[buffer(27)]], constant int64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % nb]; dst[tpig] = src0[tpig] * src1[tpig % nb];
} }
@ -222,7 +223,7 @@ kernel void kernel_div_row(
device const float4 * src0, device const float4 * src0,
device const float4 * src1, device const float4 * src1,
device float4 * dst, device float4 * dst,
constant int64_t & nb [[buffer(27)]], constant int64_t & nb [[buffer(28)]],
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] / src1[tpig % nb]; dst[tpig] = src0[tpig] / src1[tpig % nb];
} }
@ -243,6 +244,47 @@ kernel void kernel_scale_4(
dst[tpig] = src0[tpig] * scale; dst[tpig] = src0[tpig] * scale;
} }
kernel void kernel_relu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_tanh(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = precise::tanh(x);
}
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
// BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
// This was observed with Falcon 7B and 40B models
//
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_quick(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_silu( kernel void kernel_silu(
device const float4 * src0, device const float4 * src0,
device float4 * dst, device float4 * dst,
@ -251,13 +293,6 @@ kernel void kernel_silu(
dst[tpig] = x / (1.0f + exp(-x)); dst[tpig] = x / (1.0f + exp(-x));
} }
kernel void kernel_relu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_sqr( kernel void kernel_sqr(
device const float * src0, device const float * src0,
device float * dst, device float * dst,
@ -313,22 +348,6 @@ kernel void kernel_sum_rows(
dst_row[0] = row_sum; dst_row[0] = row_sum;
} }
constant float GELU_COEF_A = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
// BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
// This was observed with Falcon 7B and 40B models
//
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_soft_max( kernel void kernel_soft_max(
device const float * src0, device const float * src0,
device const float * src1, device const float * src1,
@ -650,6 +669,94 @@ kernel void kernel_rms_norm(
} }
} }
kernel void kernel_group_norm(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int32_t & n_groups,
constant float & eps,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t ne = ne00*ne01*ne02;
const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
int start = tgpig * gs;
int end = start + gs;
start += tpitg;
if (end >= ne) {
end = ne;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += ntg) {
tmp += src0[j];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float mean = tmp / gs;
tmp = 0.0f;
for (int j = start; j < end; j += ntg) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float variance = tmp / gs;
const float scale = 1.0f/sqrt(variance + eps);
for (int j = start; j < end; j += ntg) {
dst[j] *= scale;
}
}
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4) // il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor // we assume that the yl's have been multiplied with the appropriate scale factor
@ -1656,6 +1763,97 @@ kernel void kernel_im2col_f16(
} }
} }
kernel void kernel_upscale_f32(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int32_t & sf,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1/sf;
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = src0_ptr[i0/sf];
}
}
kernel void kernel_pad_f32(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1;
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i0 < ne00) {
dst_ptr[i0] = src0_ptr[i0];
} else {
dst_ptr[i0] = 0.0f;
}
}
return;
}
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = 0.0f;
}
}
// bitonic sort implementation following the CUDA kernels as reference // bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)( typedef void (argsort_t)(
device const float * x, device const float * x,
@ -1708,6 +1906,14 @@ kernel void kernel_argsort_f32_i32(
template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>; template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>; template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
kernel void kernel_leaky_relu_f32(
device const float * src0,
device float * dst,
constant float & slope,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
}
kernel void kernel_cpy_f16_f16( kernel void kernel_cpy_f16_f16(
device const half * src0, device const half * src0,
device half * dst, device half * dst,
@ -2066,9 +2272,9 @@ kernel void kernel_cpy_f32_q4_1(
} }
kernel void kernel_concat( kernel void kernel_concat(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
device char * dst, device char * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
@ -2105,7 +2311,7 @@ kernel void kernel_concat(
const int64_t i12 = i02 % ne12; const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11; const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03 * nb03 + i02 * nb02 + i01 * nb01 + tpitg.x*nb00; device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
@ -3315,10 +3521,10 @@ void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg
template <typename type4x4> template <typename type4x4>
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) { void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
const half d = xb->d; const float d = xb->d;
const half min = xb->dmin; const float min = xb->dmin;
device const uint8_t * q = (device const uint8_t *)xb->qs; device const uint8_t * q = (device const uint8_t *)xb->qs;
half dl, ml; float dl, ml;
uint8_t sc = xb->scales[il]; uint8_t sc = xb->scales[il];
#if QK_K == 256 #if QK_K == 256
@ -3388,10 +3594,10 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg
q = q + (il/4) * 32 + 16 * (il&1); q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3; il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const half d = il < 2 ? xb->d : xb->d / 16.h; const float d = il < 2 ? xb->d : xb->d / 16.h;
const half min = xb->dmin; const float min = xb->dmin;
const half dl = d * sc[0]; const float dl = d * sc[0];
const half ml = min * sc[1]; const float ml = min * sc[1];
#else #else
q = q + 16 * (il&1); q = q + 16 * (il&1);
device const uint8_t * s = xb->scales; device const uint8_t * s = xb->scales;
@ -3418,13 +3624,13 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
uint8_t ul = 1 << (il/2); uint8_t ul = 1 << (il/2);
il = il & 3; il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const half d = il < 2 ? xb->d : xb->d / 16.h; const float d = il < 2 ? xb->d : xb->d / 16.h;
const half min = xb->dmin; const float min = xb->dmin;
const half dl = d * sc[0]; const float dl = d * sc[0];
const half ml = min * sc[1]; const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0; const ushort mask = il<2 ? 0x0F : 0xF0;
const half qh_val = il<2 ? 16.h : 256.h; const float qh_val = il<2 ? 16.f : 256.f;
for (int i = 0; i < 16; ++i) { for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
} }

183
ggml.c
View File

@ -1395,7 +1395,7 @@ inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) {
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
static const float GELU_COEF_A = 0.044715f; static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f; static const float GELU_QUICK_COEF = -1.702f;
@ -1623,7 +1623,9 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"POOL_1D", "POOL_1D",
"POOL_2D", "POOL_2D",
"UPSCALE", "UPSCALE",
"PAD",
"ARGSORT", "ARGSORT",
"LEAKY_RELU",
"FLASH_ATTN", "FLASH_ATTN",
"FLASH_FF", "FLASH_FF",
@ -1650,7 +1652,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70"); static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -1707,7 +1709,9 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"pool_1d(x)", "pool_1d(x)",
"pool_2d(x)", "pool_2d(x)",
"upscale(x)", "upscale(x)",
"pad(x)",
"argsort(x)", "argsort(x)",
"leaky_relu(x)",
"flash_attn(x)", "flash_attn(x)",
"flash_ff(x)", "flash_ff(x)",
@ -1734,7 +1738,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70"); static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -1750,10 +1754,9 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"GELU", "GELU",
"GELU_QUICK", "GELU_QUICK",
"SILU", "SILU",
"LEAKY",
}; };
static_assert(GGML_UNARY_OP_COUNT == 11, "GGML_UNARY_OP_COUNT != 11"); static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@ -3830,12 +3833,25 @@ struct ggml_tensor * ggml_relu_inplace(
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU); return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
} }
// ggml_leaky // ggml_leaky_relu
struct ggml_tensor * ggml_leaky( struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a) { struct ggml_tensor * a, float negative_slope, bool inplace) {
return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY); bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
} }
// ggml_gelu // ggml_gelu
@ -4022,8 +4038,9 @@ static struct ggml_tensor * ggml_group_norm_impl(
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_GROUP_NORM;
result->op_params[0] = n_groups; result->op_params[0] = n_groups;
result->op = GGML_OP_GROUP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = NULL; // TODO: maybe store epsilon here? result->src[1] = NULL; // TODO: maybe store epsilon here?
@ -5523,6 +5540,30 @@ static struct ggml_tensor * ggml_upscale_impl(
return result; return result;
} }
struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0, int p1, int p2, int p3) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] + p0,
a->ne[1] + p1,
a->ne[2] + p2,
a->ne[3] + p3);
result->op = GGML_OP_PAD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_upscale( struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -7718,8 +7759,10 @@ static void ggml_compute_forward_mul_f32(
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
// TODO: OpenCL kernel support broadcast
#ifdef GGML_USE_CLBLAST #ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_GPU) { if (src1->backend == GGML_BACKEND_GPU) {
GGML_ASSERT(ggml_are_same_shape(src0, src1));
if (ith == 0) { if (ith == 0) {
ggml_cl_mul(src0, src1, dst); ggml_cl_mul(src0, src1, dst);
} }
@ -8985,10 +9028,9 @@ static void ggml_compute_forward_silu(
} break; } break;
} }
} }
// ggml_compute_forward_leaky_relu
// ggml_compute_forward_leaky static void ggml_compute_forward_leaky_relu_f32(
static void ggml_compute_forward_leaky_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
@ -9002,24 +9044,27 @@ static void ggml_compute_forward_leaky_f32(
const int n = ggml_nrows(src0); const int n = ggml_nrows(src0);
const int nc = src0->ne[0]; const int nc = src0->ne[0];
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
assert(dst->nb[0] == sizeof(float)); assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float)); assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
ggml_vec_leaky_f32(nc, ggml_vec_leaky_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])), (float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1]))); (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
} }
} }
static void ggml_compute_forward_leaky( static void ggml_compute_forward_leaky_relu(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_leaky_f32(params, src0, dst); ggml_compute_forward_leaky_relu_f32(params, src0, dst);
} break; } break;
default: default:
{ {
@ -12158,6 +12203,7 @@ static void ggml_compute_forward_upscale_f32(
GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS GGML_TENSOR_UNARY_OP_LOCALS
@ -12165,16 +12211,17 @@ static void ggml_compute_forward_upscale_f32(
// TODO: optimize // TODO: optimize
for (int i03 = 0; i03 < ne03; i03++) { for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int i02 = ith; i02 < ne02; i02++) { const int64_t i03 = i3;
for (int m = 0; m < dst->ne[1]; m++) { for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
int i01 = m / scale_factor; const int64_t i02 = i2;
for (int n = 0; n < dst->ne[0]; n++) { for (int64_t i1 = 0; i1 < ne1; i1++) {
int i00 = n / scale_factor; const int64_t i01 = i1 / scale_factor;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / scale_factor;
const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03); const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
*y = *x; *y = *x;
} }
@ -12199,6 +12246,64 @@ static void ggml_compute_forward_upscale(
} }
} }
// ggml_compute_forward_pad
static void ggml_compute_forward_pad_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
// TODO: optimize
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
}
}
}
}
}
}
static void ggml_compute_forward_pad(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_pad_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort // ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32( static void ggml_compute_forward_argsort_f32(
@ -13406,10 +13511,6 @@ static void ggml_compute_forward_unary(
{ {
ggml_compute_forward_silu(params, src0, dst); ggml_compute_forward_silu(params, src0, dst);
} break; } break;
case GGML_UNARY_OP_LEAKY:
{
ggml_compute_forward_leaky(params, src0, dst);
} break;
default: default:
{ {
GGML_ASSERT(false); GGML_ASSERT(false);
@ -14191,10 +14292,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_upscale(params, tensor->src[0], tensor); ggml_compute_forward_upscale(params, tensor->src[0], tensor);
} break; } break;
case GGML_OP_PAD:
{
ggml_compute_forward_pad(params, tensor->src[0], tensor);
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
ggml_compute_forward_argsort(params, tensor->src[0], tensor); ggml_compute_forward_argsort(params, tensor->src[0], tensor);
} break; } break;
case GGML_OP_LEAKY_RELU:
{
ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
} break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
{ {
const int32_t t = ggml_get_op_params_i32(tensor, 0); const int32_t t = ggml_get_op_params_i32(tensor, 0);
@ -15187,10 +15296,18 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_PAD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
{ {
struct ggml_tensor * flash_grad = NULL; struct ggml_tensor * flash_grad = NULL;
@ -15796,6 +15913,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
case GGML_OP_REPEAT: case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK: case GGML_OP_REPEAT_BACK:
case GGML_OP_LEAKY_RELU:
{ {
n_tasks = 1; n_tasks = 1;
} break; } break;
@ -15808,7 +15926,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_LEAKY:
{ {
n_tasks = 1; n_tasks = 1;
} break; } break;
@ -15927,6 +16044,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_PAD:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
n_tasks = n_threads; n_tasks = n_threads;

20
ggml.h
View File

@ -423,7 +423,9 @@ extern "C" {
GGML_OP_POOL_1D, GGML_OP_POOL_1D,
GGML_OP_POOL_2D, GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARGSORT, GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF, GGML_OP_FLASH_FF,
@ -463,7 +465,6 @@ extern "C" {
GGML_UNARY_OP_GELU, GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK, GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU, GGML_UNARY_OP_SILU,
GGML_UNARY_OP_LEAKY,
GGML_UNARY_OP_COUNT, GGML_UNARY_OP_COUNT,
}; };
@ -793,6 +794,9 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
// dst = a
// view(dst, nb1, nb2, nb3, offset) += b
// return dst
GGML_API struct ggml_tensor * ggml_acc( GGML_API struct ggml_tensor * ggml_acc(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -957,15 +961,14 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_leaky( GGML_API struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a, float negative_slope, bool inplace);
GGML_API struct ggml_tensor * ggml_relu_inplace( GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// TODO: double-check this computation is correct
GGML_API struct ggml_tensor * ggml_gelu( GGML_API struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
@ -1551,6 +1554,15 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
int scale_factor); int scale_factor);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1,
int p2,
int p3);
// sort rows // sort rows
enum ggml_sort_order { enum ggml_sort_order {
GGML_SORT_ASC, GGML_SORT_ASC,

View File

@ -234,6 +234,11 @@ static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
} }
enum test_mode {
MODE_TEST,
MODE_PERF,
};
struct test_case { struct test_case {
virtual ~test_case() {} virtual ~test_case() {}
@ -268,7 +273,58 @@ struct test_case {
return size; return size;
} }
ggml_cgraph * gf = nullptr;
static const int sentinel_size = 1024;
test_mode mode;
std::vector<ggml_tensor *> sentinels;
void add_sentinel(ggml_context * ctx) {
if (mode == MODE_PERF) {
return;
}
ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
ggml_format_name(sentinel, "sent_%zu", sentinels.size());
sentinels.push_back(sentinel);
}
// hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
add_sentinel(ctx);
return t;
}
ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
add_sentinel(ctx);
return t;
}
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) { bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
mode = MODE_TEST;
ggml_init_params params = { ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
/* .mem_base = */ NULL, /* .mem_base = */ NULL,
@ -276,6 +332,11 @@ struct test_case {
}; };
ggml_context * ctx = ggml_init(params); ggml_context * ctx = ggml_init(params);
gf = ggml_new_graph(ctx);
// pre-graph sentinel
add_sentinel(ctx);
ggml_tensor * out = build_graph(ctx); ggml_tensor * out = build_graph(ctx);
if (op_name != nullptr && op_desc(out) != op_name) { if (op_name != nullptr && op_desc(out) != op_name) {
@ -296,13 +357,20 @@ struct test_case {
} }
} }
// post-graph sentinel
add_sentinel(ctx);
// allocate // allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
// build graph // build graph
ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, out); ggml_build_forward_expand(gf, out);
// add sentinels as graph nodes so that they are checked in the callback
for (ggml_tensor * sentinel : sentinels) {
gf->nodes[gf->n_nodes++] = sentinel;
}
// randomize tensors // randomize tensors
initialize_tensors(ctx); initialize_tensors(ctx);
@ -318,9 +386,24 @@ struct test_case {
}; };
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
callback_userdata * ud = (callback_userdata *) user_data;
if (t1->op == GGML_OP_NONE) {
// sentinels must be unchanged
std::vector<uint8_t> t1_data(ggml_nbytes(t1));
std::vector<uint8_t> t2_data(ggml_nbytes(t2));
ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
printf("sentinel mismatch: %s ", t1->name);
ud->ok = false;
return true;
}
}
std::vector<float> f1 = tensor_to_float(t1); std::vector<float> f1 = tensor_to_float(t1);
std::vector<float> f2 = tensor_to_float(t2); std::vector<float> f2 = tensor_to_float(t2);
callback_userdata * ud = (callback_userdata *) user_data;
for (size_t i = 0; i < f1.size(); i++) { for (size_t i = 0; i < f1.size(); i++) {
// check for nans // check for nans
@ -349,9 +432,10 @@ struct test_case {
if (err > ud->max_err) { if (err > ud->max_err) {
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err); printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
//for (int i = 0; i < f1.size(); i++) { //for (int i = 0; i < f1.size(); i++) {
// printf("(%f, %f) ", f1[i], f2[i]); // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
//} //}
//printf("\n"); //printf("\n");
//exit(1);
ud->ok = false; ud->ok = false;
} }
return true; return true;
@ -375,6 +459,8 @@ struct test_case {
} }
bool eval_perf(ggml_backend_t backend, const char * op_name) { bool eval_perf(ggml_backend_t backend, const char * op_name) {
mode = MODE_PERF;
static const size_t graph_nodes = 8192; static const size_t graph_nodes = 8192;
ggml_init_params params = { ggml_init_params params = {
@ -1135,6 +1221,118 @@ struct test_sum_rows : public test_case {
} }
}; };
// GGML_OP_UPSCALE
struct test_upscale : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int32_t scale_factor;
std::string vars() override {
return VARS_TO_STR3(type, ne, scale_factor);
}
test_upscale(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {512, 512, 3, 1},
int32_t scale_factor = 2)
: type(type), ne(ne), scale_factor(scale_factor) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
return out;
}
};
// GGML_OP_GROUP_NORM
struct test_group_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int32_t num_groups;
std::string vars() override {
return VARS_TO_STR3(type, ne, num_groups);
}
test_group_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 64, 320, 1},
int32_t num_groups = 32)
: type(type), ne(ne), num_groups(num_groups) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
return out;
}
};
// GGML_OP_ACC
struct test_acc : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const std::array<int64_t, 4> ne_b;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, ne_b);
}
test_acc(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
: type(type), ne_a(ne_a), ne_b(ne_b) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
return out;
}
};
// GGML_OP_PAD
struct test_pad : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int pad_0;
const int pad_1;
std::string vars() override {
return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
}
test_pad(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
int pad_0 = 1, int pad_1 = 1)
: type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
return out;
}
};
// GGML_OP_LEAKY_RELU
struct test_leaky_relu : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const float negative_slope;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, negative_slope);
}
test_leaky_relu(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
float negative_slope = 0.1f)
: type(type), ne_a(ne_a), negative_slope(negative_slope) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
return out;
}
};
// Mixtral MOE // Mixtral MOE
struct test_moe : public test_case { struct test_moe : public test_case {
const int n_experts; const int n_experts;
@ -1219,11 +1417,6 @@ struct test_moe : public test_case {
} }
}; };
enum test_mode {
MODE_TEST,
MODE_PERF,
};
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
std::vector<std::unique_ptr<test_case>> test_cases; std::vector<std::unique_ptr<test_case>> test_cases;
@ -1372,12 +1565,16 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
} }
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {10, 10, 10, 10})); test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {2, 1, 1, 1})); test_cases.emplace_back(new test_upscale());
test_cases.emplace_back(new test_group_norm());
test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_leaky_relu());
#if !defined(__SANITIZE_THREAD__) #if !defined(__SANITIZE_THREAD__)
// FIXME: these tests use too much memory with thread sanitizer // FIXME: these tests use too much memory with thread sanitizer
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 14336)); test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336)); //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
#endif #endif