mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
llama : fix data units (#4101)
* llama : fix data units
ggml-ci
* Revert "llama : fix data units"
This reverts commit f5feac831f
.
* llama : disambiguate data units
ggml-ci
This commit is contained in:
parent
91f6499393
commit
4f447a4833
@ -5840,7 +5840,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
|||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
#ifdef DEBUG_CUDA_MALLOC
|
#ifdef DEBUG_CUDA_MALLOC
|
||||||
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
|
||||||
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
||||||
#endif
|
#endif
|
||||||
void * ptr;
|
void * ptr;
|
||||||
@ -5978,7 +5978,7 @@ void * ggml_cuda_host_malloc(size_t size) {
|
|||||||
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
||||||
// This can fixed the OOM error in WSL.
|
// This can fixed the OOM error in WSL.
|
||||||
cudaGetLastError();
|
cudaGetLastError();
|
||||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
|
||||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
14
ggml-metal.m
14
ggml-metal.m
@ -345,10 +345,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||||
if (ctx->device.maxTransferRate != 0) {
|
if (ctx->device.maxTransferRate != 0) {
|
||||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||||
} else {
|
} else {
|
||||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||||
}
|
}
|
||||||
@ -541,11 +541,11 @@ bool ggml_metal_add_buffer(
|
|||||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||||
|
|
||||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||||
|
|
||||||
++ctx->n_buffers;
|
++ctx->n_buffers;
|
||||||
} else {
|
} else {
|
||||||
@ -565,11 +565,11 @@ bool ggml_metal_add_buffer(
|
|||||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||||
|
|
||||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||||
if (i + size_step < size) {
|
if (i + size_step < size) {
|
||||||
GGML_METAL_LOG_INFO("\n");
|
GGML_METAL_LOG_INFO("\n");
|
||||||
}
|
}
|
||||||
|
32
llama.cpp
32
llama.cpp
@ -1087,9 +1087,9 @@ enum e_model {
|
|||||||
MODEL_70B,
|
MODEL_70B,
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t kB = 1024;
|
static const size_t kiB = 1024;
|
||||||
static const size_t MB = 1024*kB;
|
static const size_t MiB = 1024*kiB;
|
||||||
static const size_t GB = 1024*MB;
|
static const size_t GiB = 1024*MiB;
|
||||||
|
|
||||||
struct llama_hparams {
|
struct llama_hparams {
|
||||||
bool vocab_only;
|
bool vocab_only;
|
||||||
@ -1488,7 +1488,7 @@ static bool llama_kv_cache_init(
|
|||||||
vram_kv_cache += ggml_nbytes(cache.k);
|
vram_kv_cache += ggml_nbytes(cache.k);
|
||||||
}
|
}
|
||||||
if (vram_kv_cache > 0) {
|
if (vram_kv_cache > 0) {
|
||||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
@ -2543,8 +2543,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
||||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||||||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||||||
if (ml.n_bytes < GB) {
|
if (ml.n_bytes < GiB) {
|
||||||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||||
} else {
|
} else {
|
||||||
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||||
}
|
}
|
||||||
@ -2582,7 +2582,7 @@ static void llm_load_tensors(
|
|||||||
|
|
||||||
ml.calc_sizes(ctx_size, mmapped_size);
|
ml.calc_sizes(ctx_size, mmapped_size);
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
|
||||||
|
|
||||||
// create the ggml context
|
// create the ggml context
|
||||||
{
|
{
|
||||||
@ -3231,7 +3231,7 @@ static void llm_load_tensors(
|
|||||||
ctx_size +
|
ctx_size +
|
||||||
mmapped_size - vram_weights; // weights in VRAM not in memory
|
mmapped_size - vram_weights; // weights in VRAM not in memory
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||||
@ -3250,7 +3250,7 @@ static void llm_load_tensors(
|
|||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||||||
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
||||||
#else
|
#else
|
||||||
(void) n_gpu_layers;
|
(void) n_gpu_layers;
|
||||||
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||||
@ -7962,7 +7962,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
workers.clear();
|
workers.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||||
int64_t tot_count = 0;
|
int64_t tot_count = 0;
|
||||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||||
hist_all[i] += hist_cur[i];
|
hist_all[i] += hist_cur[i];
|
||||||
@ -8502,7 +8502,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
|
|
||||||
{
|
{
|
||||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// resized during inference
|
// resized during inference
|
||||||
@ -8547,7 +8547,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
// measure memory requirements for the graph
|
// measure memory requirements for the graph
|
||||||
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||||
|
|
||||||
// recreate allocator with exact memory requirements
|
// recreate allocator with exact memory requirements
|
||||||
ggml_allocr_free(ctx->alloc);
|
ggml_allocr_free(ctx->alloc);
|
||||||
@ -8561,7 +8561,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
#endif
|
#endif
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
ggml_cuda_set_scratch_size(alloc_size);
|
ggml_cuda_set_scratch_size(alloc_size);
|
||||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||||
|
|
||||||
// calculate total VRAM usage
|
// calculate total VRAM usage
|
||||||
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
|
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
|
||||||
@ -8581,10 +8581,10 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
||||||
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
|
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
|
||||||
total_vram_size / 1024.0 / 1024.0,
|
total_vram_size / 1024.0 / 1024.0,
|
||||||
model_vram_size / 1024.0 / 1024.0,
|
model_vram_size / 1024.0 / 1024.0,
|
||||||
ctx_vram_size / 1024.0 / 1024.0);
|
ctx_vram_size / 1024.0 / 1024.0);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -8605,7 +8605,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
|
|
||||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
|
||||||
|
|
||||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||||
if (!(result)) { \
|
if (!(result)) { \
|
||||||
|
Loading…
Reference in New Issue
Block a user