CUDA: fix LoRAs (#3130)

This commit is contained in:
Johannes Gäßler 2023-09-13 00:15:33 +02:00 committed by GitHub
parent 89e89599fd
commit 4f7cd6ba9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -5247,7 +5247,8 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
if (src->backend == GGML_BACKEND_CPU) {
kind = cudaMemcpyHostToDevice;
src_ptr = (char *) src->data;
} else if (src->backend == GGML_BACKEND_GPU) {
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
kind = cudaMemcpyDeviceToDevice;
struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
int id;
@ -5289,9 +5290,7 @@ inline void ggml_cuda_op_add(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
@ -5631,10 +5630,15 @@ inline void ggml_cuda_op_mul_mat_cublas(
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
float * src0_ddq_as_f32;
size_t src0_as = 0;
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
size_t src0_as;
float * src0_ddf_i = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as);
to_fp32_cuda(src0_dd_i, src0_ddf_i, row_diff*ne00, stream);
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
int id;
CUDA_CHECK(cudaGetDevice(&id));
@ -5651,10 +5655,11 @@ inline void ggml_cuda_op_mul_mat_cublas(
src1_ddf_i, ne10,
&beta, dst_dd_i, ldc));
ggml_cuda_pool_free(src0_ddf_i, src0_as);
if (src0_as > 0) {
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
}
(void) dst;
(void) src0_dd_i;
(void) src1_ddq_i;
(void) src1_padded_row_size;
}
@ -5793,7 +5798,6 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT( src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
@ -5801,7 +5805,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;