llama : add support for StarCoder model architectures (#3187)

* add placeholder of starcoder in gguf / llama.cpp

* support convert starcoder weights to gguf

* convert MQA to MHA

* fix ffn_down name

* add LLM_ARCH_STARCODER to llama.cpp

* set head_count_kv = 1

* load starcoder weight

* add max_position_embeddings

* set n_positions to max_positioin_embeddings

* properly load all starcoder params

* fix head count kv

* fix comments

* fix vram calculation for starcoder

* store mqa directly

* add input embeddings handling

* add TBD

* working in cpu, metal buggy

* cleanup useless code

* metal : fix out-of-bounds access in soft_max kernels

* llama : make starcoder graph build more consistent with others

* refactor: cleanup comments a bit

* add other starcoder models: 3B, 7B, 15B

* support-mqa-directly

* fix: remove max_position_embeddings, use n_train_ctx

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix: switch to space from tab

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Meng Zhang 2023-09-16 03:02:13 +08:00 committed by GitHub
parent 80291a1d02
commit 4fe09dfe66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 637 additions and 21 deletions

248
convert-starcoder-hf-to-gguf.py Executable file
View File

@ -0,0 +1,248 @@
#!/usr/bin/env python3
# HF starcoder --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.STARCODER
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("StarCoder")
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
sys.exit(1)
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
print("gguf: get gpt2 tokenizer vocab")
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
scores.append(0.0) # dymmy
toktypes.append(gguf.TokenType.NORMAL) # dummy
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["n_embd"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@ -77,13 +77,14 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
class MODEL_ARCH(IntEnum): class MODEL_ARCH(IntEnum):
LLAMA : int = auto() LLAMA : int = auto()
FALCON : int = auto() FALCON : int = auto()
BAICHUAN:int = auto() BAICHUAN : int = auto()
GPT2 : int = auto() GPT2 : int = auto()
GPTJ : int = auto() GPTJ : int = auto()
GPTNEOX: int = auto() GPTNEOX : int = auto()
MPT : int = auto() MPT : int = auto()
STARCODER : int = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -107,13 +108,14 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN:"baichuan", MODEL_ARCH.BAICHUAN: "baichuan",
MODEL_ARCH.GPT2: "gpt2", MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj", MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt", MODEL_ARCH.MPT: "mpt",
MODEL_ARCH.STARCODER: "starcoder",
} }
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
@ -171,6 +173,18 @@ MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
}, },
MODEL_ARCH.STARCODER: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: { MODEL_ARCH.GPT2: {
# TODO # TODO
}, },

368
llama.cpp
View File

@ -160,17 +160,19 @@ enum llm_arch {
LLM_ARCH_GPTJ, LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX, LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT, LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
static std::map<llm_arch, std::string> LLM_ARCH_NAMES = { static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPT2, "gpt2" },
{ LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN,"baichuan" }, { LLM_ARCH_BAICHUAN, "baichuan" },
{ LLM_ARCH_STARCODER, "starcoder" },
}; };
enum llm_kv { enum llm_kv {
@ -376,6 +378,21 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
}, },
}, },
{
LLM_ARCH_STARCODER,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -895,9 +912,11 @@ static llama_state g_state;
// available llama models // available llama models
enum e_model { enum e_model {
MODEL_UNKNOWN, MODEL_UNKNOWN,
MODEL_1B,
MODEL_3B, MODEL_3B,
MODEL_7B, MODEL_7B,
MODEL_13B, MODEL_13B,
MODEL_15B,
MODEL_30B, MODEL_30B,
MODEL_34B, MODEL_34B,
MODEL_40B, MODEL_40B,
@ -966,13 +985,22 @@ struct llama_layer {
struct ggml_tensor * wo; struct ggml_tensor * wo;
struct ggml_tensor * wqkv; struct ggml_tensor * wqkv;
// attention bias
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
// normalization // normalization
struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
// ff // ff
struct ggml_tensor * w1; // ffn_gate struct ggml_tensor * w1; // ffn_gate
struct ggml_tensor * w2; // ffn_down struct ggml_tensor * w2; // ffn_down
struct ggml_tensor * w3; // ffn_up struct ggml_tensor * w3; // ffn_up
// ff bias
struct ggml_tensor * b2; // ffn_down
struct ggml_tensor * b3; // ffn_up
}; };
struct llama_kv_cache { struct llama_kv_cache {
@ -1050,6 +1078,7 @@ struct llama_model {
llama_vocab vocab; llama_vocab vocab;
struct ggml_tensor * tok_embeddings; struct ggml_tensor * tok_embeddings;
struct ggml_tensor * pos_embeddings;
struct ggml_tensor * output_norm; struct ggml_tensor * output_norm;
struct ggml_tensor * output_norm_b; struct ggml_tensor * output_norm_b;
@ -1593,9 +1622,11 @@ std::string llama_model_ftype_name(enum llama_ftype ftype) {
static const char * llama_model_type_name(e_model type) { static const char * llama_model_type_name(e_model type) {
switch (type) { switch (type) {
case MODEL_1B: return "1B";
case MODEL_3B: return "3B"; case MODEL_3B: return "3B";
case MODEL_7B: return "7B"; case MODEL_7B: return "7B";
case MODEL_13B: return "13B"; case MODEL_13B: return "13B";
case MODEL_15B: return "15B";
case MODEL_30B: return "30B"; case MODEL_30B: return "30B";
case MODEL_34B: return "34B"; case MODEL_34B: return "34B";
case MODEL_40B: return "40B"; case MODEL_40B: return "40B";
@ -1713,6 +1744,17 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_STARCODER:
{
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 36: model.type = e_model::MODEL_3B; break;
case 42: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_15B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0; default: (void)0;
}; };
@ -2166,6 +2208,85 @@ static void llm_load_tensors(
} }
} }
} break; } break;
case LLM_ARCH_STARCODER:
{
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
// output
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
vram_weights += ggml_nbytes(model.output_norm_b);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
}
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
}; };
@ -3305,6 +3426,235 @@ static struct ggml_cgraph * llm_build_falcon(
return gf; return gf;
} }
static struct ggml_cgraph * llm_build_starcoder(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
int n_past) {
GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float norm_eps = hparams.f_norm_eps;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * token;
struct ggml_tensor * position;
struct ggml_tensor * inpL;
if (tokens) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
ggml_allocr_alloc(lctx.alloc, token);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
}
}
{
// Compute position embeddings.
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
ggml_allocr_alloc(lctx.alloc, inp_positions);
if (!ggml_allocr_is_measure(lctx.alloc)) {
for (int i = 0; i < N; ++i) {
((int32_t *) inp_positions->data)[i] = n_past + i;
}
}
ggml_set_name(inp_positions, "inp_positions");
position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
}
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
inpL = ggml_add(ctx0, token, position);
ggml_set_name(inpL, "inpL");
for (int il = 0; il < n_layer; ++il) {
{
// Norm
cur = ggml_norm(ctx0, inpL, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
}
{
// Self Attention
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*n_embd);
struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
struct ggml_tensor * Qcur = tmpq;
struct ggml_tensor * Kcur = tmpk;
{
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, N)),
0, 2, 1, 3);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_past + N, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
ggml_set_name(V, "V");
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
ggml_set_name(cur, "KQV_merged_contiguous");
}
// Projection
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
// Add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
// FF
{
// Norm
{
cur = ggml_norm(ctx0, inpFF, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
}
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// Projection
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
}
inpL = ggml_add(ctx0, cur, inpFF);
}
// Output Norm
{
cur = ggml_norm(ctx0, inpL, norm_eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
}
ggml_set_name(cur, "result_norm");
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llama_build_graph( static struct ggml_cgraph * llama_build_graph(
llama_context & lctx, llama_context & lctx,
const llama_token * tokens, const llama_token * tokens,
@ -3328,6 +3678,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past); result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
} break; } break;
case LLM_ARCH_STARCODER:
{
result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
} break;
default: default:
GGML_ASSERT(false); GGML_ASSERT(false);
}; };