mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
lookup: complement data from context with general text statistics (#5479)
* lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens
This commit is contained in:
parent
56a00f0a2f
commit
50ccaf5eac
3
.gitignore
vendored
3
.gitignore
vendored
@ -58,6 +58,9 @@ models-mnt
|
||||
/llava-cli
|
||||
/lookahead
|
||||
/lookup
|
||||
/lookup-create
|
||||
/lookup-merge
|
||||
/lookup-stats
|
||||
/main
|
||||
/metal
|
||||
/passkey
|
||||
|
13
Makefile
13
Makefile
@ -676,6 +676,9 @@ json-schema-to-grammar.o: common/json-schema-to-grammar.cpp common/json-schema-t
|
||||
train.o: common/train.cpp common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ngram-cache.o: common/ngram-cache.cpp common/ngram-cache.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
@ -683,7 +686,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
|
||||
clean:
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
#
|
||||
@ -813,9 +816,15 @@ lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
@ -65,6 +65,8 @@ add_library(${TARGET} STATIC
|
||||
json.hpp
|
||||
train.h
|
||||
train.cpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
@ -963,6 +963,22 @@ static bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg,
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-lcs" || arg == "--lookup-cache-static") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.lookup_cache_static = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.lookup_cache_dynamic = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -1436,6 +1452,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" Hugging Face model file (default: unused)\n");
|
||||
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
||||
printf(" path under which to save YAML logs (no logging if unset)\n");
|
||||
printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
|
||||
printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
|
||||
printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
|
||||
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
|
@ -101,6 +101,8 @@ struct gpt_params {
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
280
common/ngram-cache.cpp
Normal file
280
common/ngram-cache.cpp
Normal file
@ -0,0 +1,280 @@
|
||||
#include "ngram-cache.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <fstream>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
|
||||
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
|
||||
int64_t n_done = 0;
|
||||
|
||||
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
token_count_it->second++;
|
||||
}
|
||||
}
|
||||
++n_done;
|
||||
|
||||
if (print_progress && n_done % 10000000 == 0) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to get a token from the combined, speculative sequence of inp and draft.
|
||||
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
|
||||
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
|
||||
}
|
||||
|
||||
// If sample size or percentage are below these thresholds the draft is aborted early:
|
||||
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
|
||||
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
|
||||
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_static : part_static) {
|
||||
const llama_token token = token_count_static.first;
|
||||
const int32_t count_static = token_count_static.second;
|
||||
|
||||
if (count_static > max_count_static) {
|
||||
max_token = token;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_static += count_static;
|
||||
}
|
||||
|
||||
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
|
||||
return -1;
|
||||
}
|
||||
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
|
||||
return -1;
|
||||
}
|
||||
return max_token;
|
||||
}
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
int sum_count_primary = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
|
||||
if (count_primary*count_static > max_count_primary*max_count_static) {
|
||||
max_token = token;
|
||||
max_count_primary = count_primary;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_primary += count_primary;
|
||||
}
|
||||
|
||||
if (sum_count_primary < min_sample_size[i]) {
|
||||
continue;
|
||||
}
|
||||
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
|
||||
continue;;
|
||||
}
|
||||
drafted_token = max_token;
|
||||
}
|
||||
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
|
||||
if (inp_size < LLAMA_NGRAM_STATIC) {
|
||||
return;
|
||||
}
|
||||
|
||||
while ((int) draft.size()-1 < n_draft) {
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
ngrams_cd.push_back(ngram_cd);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_static, ngram_static);
|
||||
}
|
||||
|
||||
if (drafted_token == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG(" - draft candidate: token=%d\n", drafted_token);
|
||||
draft.push_back(drafted_token);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
const int32_t count = item2.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
|
||||
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
|
||||
char * ngramc = reinterpret_cast<char*>(&ngram);
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
|
||||
GGML_ASSERT(count > 0);
|
||||
token_counts.emplace(token, count);
|
||||
}
|
||||
|
||||
ngram_cache.emplace(ngram, token_counts);
|
||||
}
|
||||
GGML_ASSERT(hashmap_file.eof());
|
||||
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (std::pair<llama_token, int32_t> token_count : part) {
|
||||
const llama_token token = token_count.first;
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
}
|
||||
|
||||
token_count_merged_it->second += count;
|
||||
}
|
||||
}
|
||||
}
|
94
common/ngram-cache.h
Normal file
94
common/ngram-cache.h
Normal file
@ -0,0 +1,94 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define LLAMA_NGRAM_MIN 1
|
||||
#define LLAMA_NGRAM_MAX 4
|
||||
#define LLAMA_NGRAM_STATIC 2
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = 0;
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
// ngram_cache: the cache to modify.
|
||||
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
|
||||
// inp_data: the token sequence with which to update ngram_cache.
|
||||
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
|
||||
// print_progress: whether to print progress to stderr.
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
|
||||
// n_draft: maximum number of tokens to add to draft.
|
||||
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
@ -3,3 +3,21 @@ add_executable(${TARGET} lookup.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-create)
|
||||
add_executable(${TARGET} lookup-create.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-merge)
|
||||
add_executable(${TARGET} lookup-merge.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-stats)
|
||||
add_executable(${TARGET} lookup-stats.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
43
examples/lookup/lookup-create.cpp
Normal file
43
examples/lookup/lookup-create.cpp
Normal file
@ -0,0 +1,43 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
GGML_ASSERT(model != nullptr);
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
llama_ngram_cache ngram_cache;
|
||||
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
}
|
47
examples/lookup/lookup-merge.cpp
Normal file
47
examples/lookup/lookup-merge.cpp
Normal file
@ -0,0 +1,47 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage() {
|
||||
fprintf(stderr, "Merges multiple lookup cache files into a single one.\n");
|
||||
fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
if (argc < 3) {
|
||||
print_usage();
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::vector<std::string> args;
|
||||
args.resize(argc-1);
|
||||
for (int i = 0; i < argc-1; ++i) {
|
||||
args[i] = argv[i+1];
|
||||
if (args[i] == "-h" || args[i] == "--help") {
|
||||
print_usage();
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
|
||||
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
|
||||
|
||||
for (size_t i = 1; i < args.size()-1; ++i) {
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
|
||||
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
|
||||
|
||||
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
|
||||
llama_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
}
|
163
examples/lookup/lookup-stats.cpp
Normal file
163
examples/lookup/lookup-stats.cpp
Normal file
@ -0,0 +1,163 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
const int n_ctx = params.n_ctx;
|
||||
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
|
||||
// Iterate over input tokens in chunks of size n_ctx.
|
||||
// Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
|
||||
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
|
||||
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
|
||||
std::vector<llama_token> pseudo_output;
|
||||
pseudo_output.push_back(inp_slice[0]);
|
||||
|
||||
while ((int) pseudo_output.size() < n_ctx) {
|
||||
// Simulate drafting and decoding from draft:
|
||||
std::vector<llama_token> draft;
|
||||
draft.push_back(pseudo_output.back());
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
|
||||
const llama_token ground_truth = inp_slice[pseudo_output.size()];
|
||||
const llama_token drafted = draft[j];
|
||||
|
||||
if (ground_truth != drafted) {
|
||||
break;
|
||||
}
|
||||
|
||||
++n_accept;
|
||||
pseudo_output.push_back(ground_truth);
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
// After each simulated batch decoding simulate the sampling of a single token:
|
||||
if ((int) pseudo_output.size() < n_ctx) {
|
||||
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
draft.erase(draft.begin());
|
||||
|
||||
}
|
||||
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,12 +1,15 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
@ -15,11 +18,7 @@ int main(int argc, char ** argv){
|
||||
return 1;
|
||||
}
|
||||
|
||||
// max/min n-grams size to search for in prompt
|
||||
const int ngram_max = 4;
|
||||
const int ngram_min = 1;
|
||||
|
||||
// length of the candidate / draft sequence, if match is found
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
@ -39,6 +38,8 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
@ -47,6 +48,35 @@ int main(int argc, char ** argv){
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
// Fill up context ngram cache with tokens from user input:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
@ -76,8 +106,6 @@ int main(int argc, char ** argv){
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
int n_past = inp.size();
|
||||
|
||||
bool has_eos = false;
|
||||
@ -129,6 +157,12 @@ int main(int argc, char ** argv){
|
||||
++n_past;
|
||||
++i_dft;
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
if (params.use_color) {
|
||||
// color accepted draft token
|
||||
@ -149,6 +183,12 @@ int main(int argc, char ** argv){
|
||||
draft.clear();
|
||||
draft.push_back(id);
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@ -163,44 +203,19 @@ int main(int argc, char ** argv){
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
// generate n_pred tokens through prompt lookup
|
||||
auto prompt_lookup = [&]() -> void {
|
||||
const int inp_size = inp.size();
|
||||
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
|
||||
const llama_token * ngram = &inp[inp_size - ngram_size];
|
||||
|
||||
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
|
||||
bool match = true;
|
||||
for (int j = 0; j < ngram_size; ++j) {
|
||||
if (inp[i + j] != ngram[j]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (match) {
|
||||
const int startIdx = i + ngram_size;
|
||||
const int endIdx = startIdx + n_draft;
|
||||
if (endIdx < inp_size) {
|
||||
for (int j = startIdx; j < endIdx; ++j) {
|
||||
LOG(" - draft candidate %d: %d\n", j, inp[j]);
|
||||
draft.push_back(inp[j]);
|
||||
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
|
||||
++n_drafted;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
// Draft already contains a single token sampled from the model:
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
GGML_ASSERT(draft[0] == inp.back());
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
prompt_lookup();
|
||||
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
|
||||
for (size_t i = 1; i < draft.size(); ++i) {
|
||||
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
llama_decode(ctx, batch_tgt);
|
||||
++n_past;
|
||||
@ -210,6 +225,10 @@ int main(int argc, char ** argv){
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
@ -219,6 +238,7 @@ int main(int argc, char ** argv){
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
|
10
scripts/get-wikitext-103.sh
Executable file
10
scripts/get-wikitext-103.sh
Executable file
@ -0,0 +1,10 @@
|
||||
#!/bin/bash
|
||||
|
||||
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
|
||||
|
||||
echo "Usage:"
|
||||
echo ""
|
||||
echo " ./perplexity -m model.gguf -f wiki.test.raw [other params]"
|
||||
echo ""
|
||||
|
||||
exit 0
|
Loading…
Reference in New Issue
Block a user