server: init functional tests (#5566)

* server: tests: init scenarios
 - health and slots endpoints
 - completion endpoint
 - OAI compatible chat completion requests w/ and without streaming
 - completion multi users scenario
 - multi users scenario on OAI compatible endpoint with streaming
 - multi users with total number of tokens to predict exceeds the KV Cache size
 - server wrong usage scenario, like in Infinite loop of "context shift" #3969
 - slots shifting
 - continuous batching
 - embeddings endpoint
 - multi users embedding endpoint: Segmentation fault #5655
 - OpenAI-compatible embeddings API
 - tokenize endpoint
 - CORS and api key scenario

* server: CI GitHub workflow


---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Pierrick Hymbert 2024-02-24 12:28:55 +01:00 committed by GitHub
parent fd43d66f46
commit 525213d2f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 1243 additions and 18 deletions

View File

@ -7,3 +7,5 @@ assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).

127
.github/workflows/server.yml vendored Normal file
View File

@ -0,0 +1,127 @@
# Server build and tests
name: Server
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
- test/server-add-ci-test # FIXME remove
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
jobs:
server:
runs-on: ubuntu-latest
strategy:
matrix:
build: [noavx, avx2, avx, avx512, cublas, clblast, openblas, kompute, vulkan]
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
include:
- build: 'noavx'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
image: ubuntu:latest
- build: 'avx2'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
image: ubuntu:latest
- build: 'avx'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF'
image: ubuntu:latest
- build: 'avx512'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON'
image: ubuntu:latest
experimental: true
- build: 'cublas'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON'
image: nvidia/cuda:12.3.1-devel-ubuntu22.04
arch_not_available: true # require nvidia docker engine
- build: 'clblast'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON'
image: ubuntu:latest
arch_not_available: true
- build: 'openblas'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS'
image: ubuntu:latest
- build: 'kompute'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
image: ubuntu:latest
arch_not_available: true
- build: 'vulkan'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON'
image: ubuntu:latest
arch_not_available: true
container:
image: ${{ matrix.image }}
ports:
- 8888
options: --cpus 4
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
apt-get update
apt-get -y install \
build-essential \
pkg-config \
git \
cmake \
python3-pip \
wget \
psmisc
- name: Download CLBlast
id: get_clblast
if: ${{ matrix.build == 'clblast' }}
run: |
apt install -y libclblast-dev
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas' }}
run: |
apt-get -y install libopenblas-dev
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
run: |
wget -qO- https://packages.lunarg.com/lunarg-signing-key-pub.asc | tee /etc/apt/trusted.gpg.d/lunarg.asc
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list http://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
apt-get update
apt-get -y install vulkan-sdk
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ${{ matrix.defines }}
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Download models
id: download_models
run: |
cd examples/server/tests
../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf
- name: Tests
id: server_integration_test
continue-on-error: ${{ matrix.experimental || matrix.arch_not_available }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh

View File

@ -98,6 +98,12 @@ curl --request POST \
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
```
## Advanced testing
We implemented a [server test framework](./tests/README.md) using human-readable scenario.
*Before submitting an issue, please try to reproduce it with this format.*
## Node JS Test
You need to have [Node.js](https://nodejs.org/en) installed.

View File

@ -1410,11 +1410,6 @@ struct llama_server_context
int n_processing_slots = 0;
for (llama_client_slot &slot: slots) {
if (slot.available()) {
n_idle_slots++;
} else {
n_processing_slots++;
}
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["task_id"] = slot.task_id;
@ -1429,6 +1424,11 @@ struct llama_server_context
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
};
if (slot_data["state"] == IDLE) {
n_idle_slots++;
} else {
n_processing_slots++;
}
slots_data.push_back(slot_data);
}
LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
@ -2748,19 +2748,6 @@ int main(int argc, char **argv)
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
}
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
if (!svr.listen_after_bind())
{
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
// load the model
if (!llama.load_model(params))
{
@ -3228,6 +3215,19 @@ int main(int argc, char **argv)
}*/
//);
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
if (!svr.listen_after_bind())
{
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
llama.queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
llama.queue_tasks.on_finish_multitask(std::bind(

View File

@ -0,0 +1,46 @@
# Server tests
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Tests target GitHub workflows job runners with 4 vCPU.
Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
### Install dependencies
`pip install -r requirements.txt`
### Run tests
1. Build the server
```shell
cd ../../..
mkdir build
cd build
cmake ../
cmake --build . --target server
```
2. download required models:
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
3. Start the test: `./tests.sh`
It's possible to override some scenario steps values with environment variables:
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
### Run @bug, @wip or @wrong_usage annotated scenario
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
- `@bug` annotation aims to link a scenario with a GitHub issue.
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
- `@wip` to focus on a scenario working in progress
To run a scenario annotated with `@bug`, start:
`DEBUG=ON ./tests.sh --no-skipped --tags bug`
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.

View File

@ -0,0 +1,67 @@
import os
import socket
import subprocess
import time
from contextlib import closing
from signal import SIGKILL
def before_scenario(context, scenario):
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])
if is_server_listening("localhost", port):
assert False, "Server already started"
def after_scenario(context, scenario):
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
if os.path.isfile('llama.log'):
with closing(open('llama.log', 'r')) as f:
for line in f:
print(line)
if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if not pid_exists(context.server_process.pid):
assert False, f"Server not running pid={context.server_process.pid} ..."
print(f"stopping server pid={context.server_process.pid} ...")
context.server_process.kill()
# Wait few for socket to free up
time.sleep(0.05)
attempts = 0
while is_server_listening(context.server_fqdn, context.server_port):
print(f"stopping server pid={context.server_process.pid} ...")
os.kill(context.server_process.pid, SIGKILL)
time.sleep(0.1)
attempts += 1
if attempts > 5:
print(f"Server dangling exits, killing all {context.server_path} ...")
process = subprocess.run(['killall', '-9', context.server_path],
stderr=subprocess.PIPE,
universal_newlines=True)
print(process)
def is_server_listening(server_fqdn, server_port):
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((server_fqdn, server_port))
return result == 0
def pid_exists(pid):
"""Check whether pid exists in the current process table."""
import errno
if pid < 0:
return False
try:
os.kill(pid, 0)
except OSError as e:
return e.errno == errno.EPERM
else:
return True

View File

@ -0,0 +1,36 @@
# List of ongoing issues
@bug
Feature: Issues
# Issue #5655
Scenario: Multi users embeddings
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
And 64 KV cache size
And 2 slots
And continuous batching
And embeddings extraction
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated

View File

@ -0,0 +1,77 @@
@llama.cpp
Feature: Parallel
Background: Server startup
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
And 64 KV cache size
And 2 slots
And continuous batching
Then the server is starting
Then the server is healthy
Scenario Outline: Multi users completion
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And <n_predict> max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| n_predict |
| 128 |
Scenario Outline: Multi users OAI completions compatibility
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
And 128 max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
Then all prompts are predicted

View File

@ -0,0 +1,50 @@
@llama.cpp
Feature: Security
Background: Server startup with an api key defined
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a server api key llama.cpp
Then the server is starting
Then the server is healthy
Scenario Outline: Completion with some user api key
Given a prompt test
And a user api key <api_key>
And 4 max tokens to predict
And a completion request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| llama.cpp | no |
| llama.cpp | no |
| hackeme | raised |
| | raised |
Scenario Outline: OAI Compatibility
Given a system prompt test
And a user prompt test
And a model test
And 2 max tokens to predict
And streaming is disabled
And a user api key <api_key>
Given an OAI compatible chat completions request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| llama.cpp | no |
| llama.cpp | no |
| hackme | raised |
Scenario Outline: CORS Options
When an OPTIONS request is sent from <origin>
Then CORS header <cors_header> is set to <cors_header_value>
Examples: Headers
| origin | cors_header | cors_header_value |
| localhost | Access-Control-Allow-Origin | localhost |
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
| origin | Access-Control-Allow-Credentials | true |
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
| web.mydomain.fr | Access-Control-Allow-Headers | * |

View File

@ -0,0 +1,69 @@
@llama.cpp
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
# see --ctx-size and #5568
And 32 KV cache size
And 1 slots
And embeddings extraction
And 32 server max tokens to predict
Then the server is starting
Then the server is healthy
Scenario: Health
Then the server is ready
And all slots are idle
Scenario Outline: Completion
Given a prompt <prompt>
And <n_predict> max tokens to predict
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples: Prompts
| prompt | n_predict | re_content | n_predicted |
| I believe the meaning of life is | 8 | read | 8 |
| Write a joke about AI | 64 | (park<or>friends<or>scared)+ | 32 |
Scenario Outline: OAI Compatibility
Given a model <model>
And a system prompt <system_prompt>
And a user prompt <user_prompt>
And <max_tokens> max tokens to predict
And streaming is <enable_streaming>
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
| llama-2 | Book | What is the best book | 8 | (Mom<or>what)+ | 8 | disabled |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks<or>happy<or>bird)+ | 32 | enabled |
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model tinyllama-2
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: Tokenize / Detokenize
When tokenizing:
"""
What is the capital of France ?
"""
Then tokens can be detokenize

View File

@ -0,0 +1,709 @@
import asyncio
import json
import os
import re
import socket
import subprocess
import time
from contextlib import closing
from re import RegexFlag
import aiohttp
import openai
from behave import step
from behave.api.async_step import async_run_until_complete
@step(u"a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn, server_port):
context.server_fqdn = server_fqdn
context.server_port = int(server_port)
if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
context.model_alias = None
context.n_ctx = None
context.n_predict = None
context.n_server_predict = None
context.n_slots = None
context.server_api_key = None
context.server_continuous_batching = False
context.server_embeddings = False
context.server_seed = None
context.user_api_key = None
context.tasks_result = []
context.concurrent_tasks = []
context.prompts = []
@step(u'a model file {model_file}')
def step_model_file(context, model_file):
context.model_file = model_file
@step(u'a model alias {model_alias}')
def step_model_alias(context, model_alias):
context.model_alias = model_alias
@step(u'{seed} as server seed')
def step_seed(context, seed):
context.server_seed = int(seed)
@step(u'{n_ctx} KV cache size')
def step_n_ctx(context, n_ctx):
context.n_ctx = int(n_ctx)
@step(u'{n_slots} slots')
def step_n_slots(context, n_slots):
context.n_slots = int(n_slots)
@step(u'{n_predict} server max tokens to predict')
def step_server_n_predict(context, n_predict):
context.n_server_predict = int(n_predict)
@step(u'continuous batching')
def step_server_continuous_batching(context):
context.server_continuous_batching = True
@step(u'embeddings extraction')
def step_server_embeddings(context):
context.server_embeddings = True
@step(u"the server is starting")
def step_start_server(context):
start_server_background(context)
attempts = 0
while True:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((context.server_fqdn, context.server_port))
if result == 0:
print("\x1b[33;46mserver started!\x1b[0m")
return
attempts += 1
if attempts > 20:
assert False, "server not started"
print(f"waiting for server to start, connect error code = {result}...")
time.sleep(0.1)
@step(u"the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_the_server_to_be_started(context, expecting_status):
match expecting_status:
case 'healthy':
await wait_for_health_status(context, context.base_url, 200, 'ok')
case 'ready' | 'idle':
await wait_for_health_status(context, context.base_url, 200, 'ok',
params={'fail_on_no_slot': 0, 'include_slots': 0},
slots_idle=context.n_slots,
slots_processing=0,
expected_slots=[{'id': slot_id, 'state': 0}
for slot_id in range(context.n_slots)])
case 'busy':
await wait_for_health_status(context, context.base_url, 503,
'no slot available',
params={'fail_on_no_slot': 0, 'include_slots': 0},
slots_idle=0,
slots_processing=context.n_slots,
expected_slots=[{'id': slot_id, 'state': 1}
for slot_id in range(context.n_slots)])
case _:
assert False, "unknown status"
@step(u'all slots are {expected_slot_status_string}')
@async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string):
match expected_slot_status_string:
case 'idle':
expected_slot_status = 0
case 'busy':
expected_slot_status = 1
case _:
assert False, "unknown status"
expected_slots = [{'id': slot_id, 'state': expected_slot_status}
for slot_id in range(context.n_slots)]
await request_slots_status(context, expected_slots)
@step(u'a completion request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error):
expect_api_error = api_error == 'raised'
completion = await request_completion(context.prompts.pop(),
context.base_url,
debug=context.debug,
n_predict=context.n_predict,
server_seed=context.server_seed,
expect_api_error=expect_api_error,
user_api_key=context.user_api_key)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
@step(u'{predicted_n} tokens are predicted matching {re_content}')
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n), re_content)
@step(u'{predicted_n} tokens are predicted')
def step_n_tokens_predicted(context, predicted_n):
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n))
@step(u'a user prompt {user_prompt}')
def step_user_prompt(context, user_prompt):
context.prompts.append(user_prompt)
@step(u'a system prompt {system_prompt}')
def step_system_prompt(context, system_prompt):
context.system_prompt = system_prompt
@step(u'a model {model}')
def step_model(context, model):
context.model = model
@step(u'{max_tokens} max tokens to predict')
def step_max_tokens(context, max_tokens):
context.n_predict = int(max_tokens)
@step(u'streaming is {enable_streaming}')
def step_streaming(context, enable_streaming):
context.enable_streaming = enable_streaming == 'enabled'
@step(u'a user api key {user_api_key}')
def step_user_api_key(context, user_api_key):
context.user_api_key = user_api_key
@step(u'no user api key')
def step_no_user_api_key(context):
context.user_api_key = None
@step(u'a user api key ')
def step_no_user_api_key_space(context):
context.user_api_key = None
@step(u'a server api key {server_api_key}')
def step_server_api_key(context, server_api_key):
context.server_api_key = server_api_key
@step(u'an OAI compatible chat completions request with {api_error} api error')
@async_run_until_complete
async def step_oai_chat_completions(context, api_error):
if context.debug:
print(f"Submitting OAI compatible completions request...")
expect_api_error = api_error == 'raised'
completion = await oai_chat_completions(context.prompts.pop(),
context.system_prompt,
context.base_url,
False,
model=context.model if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None,
expect_api_error=expect_api_error)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
if context.debug:
print(f"Completion response: {completion}")
@step(u'a prompt')
def step_a_prompt(context):
context.prompts.append(context.text)
@step(u'a prompt {prompt}')
def step_a_prompt_prompt(context, prompt):
context.prompts.append(prompt)
@step(u'concurrent completion requests')
@async_run_until_complete()
async def step_concurrent_completion_requests(context):
await concurrent_completion_requests(context,
request_completion,
# prompt is inserted automatically
context.base_url,
debug=context.debug,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key if hasattr(context,
'user_api_key') else None)
@step(u'concurrent OAI completions requests')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_completion_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
n_predict=context.n_predict
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step(u'all prompts are predicted')
@async_run_until_complete
async def step_all_prompts_are_predicted(context):
await all_prompts_are_predicted(context)
@step(u'all prompts are predicted with {n_predict} tokens')
@async_run_until_complete
async def step_all_prompts_are_predicted_with_n_tokens(context, n_predict):
expected_predicted_n = int(n_predict)
await all_prompts_are_predicted(context, expected_predicted_n)
async def all_prompts_are_predicted(context, expected_predicted_n=None):
n_completions = await gather_tasks_results(context)
assert n_completions > 0
for i in range(n_completions):
assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
@step(u'embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
content = context.text
base_url = context.base_url
context.embeddings = await request_embedding(content, base_url)
@step(u'embeddings are generated')
def step_assert_embeddings(context):
assert_embeddings(context.embeddings)
@step(u'an OAI compatible embeddings computation request for')
def step_oai_compute_embedding(context):
openai.api_key = 'nope' # openai client always expects an api_keu
if context.user_api_key is not None:
openai.api_key = context.user_api_key
openai.api_base = f'{context.base_url}/v1'
embeddings = openai.Embedding.create(
model=context.model,
input=context.text,
)
context.embeddings = embeddings
@step(u'concurrent embedding requests')
@async_run_until_complete()
async def step_concurrent_embedding_requests(context):
await concurrent_completion_requests(context,
request_embedding,
# prompt is inserted automatically
context.base_url)
@step(u'all embeddings are generated')
@async_run_until_complete()
async def all_embeddings_are_generated(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests > 0
for i in range(n_embedding_requests):
assert_embeddings(context.tasks_result.pop())
@step(u'tokenizing')
@async_run_until_complete
async def step_tokenize(context):
context.tokenized_text = context.text
async with aiohttp.ClientSession() as session:
async with session.post(f'{context.base_url}/tokenize',
json={
"content": context.tokenized_text,
}) as response:
assert response.status == 200
tokenize_json = await response.json()
context.tokens = tokenize_json['tokens']
@step(u'tokens can be detokenize')
@async_run_until_complete
async def step_detokenize(context):
assert len(context.tokens) > 0
async with aiohttp.ClientSession() as session:
async with session.post(f'{context.base_url}/detokenize',
json={
"tokens": context.tokens,
}) as response:
assert response.status == 200
detokenize_json = await response.json()
# SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
assert context.tokenized_text == detokenize_json['content'].strip()
@step(u'an OPTIONS request is sent from {origin}')
@async_run_until_complete
async def step_options_request(context, origin):
async with aiohttp.ClientSession() as session:
async with session.options(f'{context.base_url}/v1/chat/completions',
headers={"Origin": origin}) as response:
assert response.status == 200
context.options_response = response
@step(u'CORS header {cors_header} is set to {cors_header_value}')
def step_check_options_header_value(context, cors_header, cors_header_value):
assert context.options_response.headers[cors_header] == cors_header_value
async def concurrent_completion_requests(context, f_completion, *args, **kwargs):
n_prompts = len(context.prompts)
if context.debug:
print(f"starting {n_prompts} concurrent completion requests...")
assert n_prompts > 0
for prompt_no in range(n_prompts):
shifted_args = [context.prompts.pop(), *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
await asyncio.sleep(0.1)
async def request_completion(prompt,
base_url,
debug=False,
n_predict=None,
server_seed=None,
expect_api_error=None,
user_api_key=None):
if debug:
print(f"Sending completion request: {prompt}")
origin = "my.super.domain"
headers = {
'Origin': origin
}
if user_api_key is not None:
if debug:
print(f"Set user_api_key: {user_api_key}")
headers['Authorization'] = f'Bearer {user_api_key}'
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/completion',
json={
"prompt": prompt,
"n_predict": int(n_predict) if n_predict is not None else -1,
"seed": server_seed if server_seed is not None else 42
},
headers=headers) as response:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
return await response.json()
else:
return response.status
async def oai_chat_completions(user_prompt,
system_prompt,
base_url,
async_client,
debug=False,
model=None,
n_predict=None,
enable_streaming=None,
server_seed=None,
user_api_key=None,
expect_api_error=None):
if debug:
print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key
user_api_key = user_api_key if user_api_key is not None else 'nope'
seed = server_seed if server_seed is not None else 42
enable_streaming = enable_streaming if enable_streaming is not None else False
payload = {
"messages": [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": user_prompt,
}
],
"model": model,
"max_tokens": n_predict,
"stream": enable_streaming,
"seed": seed
}
completion_response = {
'content': '',
'timings': {
'predicted_n': 0
}
}
if async_client:
origin = 'llama.cpp'
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/v1/chat/completions',
json=payload,
headers=headers) as response:
if enable_streaming:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "text/event-stream"
event_received = True
while event_received:
event_received = False
async for line_in_bytes in response.content:
line = line_in_bytes.decode('utf8')
line = line.rstrip('\n').rstrip('\r')
if line == '':
continue
event_data = line.split(': ', 1)
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
chunk_raw = event_data[1]
chunk = json.loads(chunk_raw)
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
delta = chunk['choices'][0]['delta']
if 'content' in delta:
completion_response['content'] += delta['content']
completion_response['timings']['predicted_n'] += 1
else:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
chat_completion_raw = await response.json()
completion_response = {
'content': chat_completion_raw['choices'][0]['message'],
'timings': {
'predicted_n': chat_completion_raw['usage']['completion_tokens']
}
}
else:
return response.status
else:
try:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1/chat'
chat_completion = openai.Completion.create(
messages=payload['messages'],
model=model,
max_tokens=n_predict,
stream=enable_streaming,
seed=seed
)
except openai.error.APIError as e:
if expect_api_error is not None and expect_api_error:
return 401
else:
assert False, f'error raised: {e}'
if enable_streaming:
for chunk in chat_completion:
assert len(chunk.choices) == 1
delta = chunk.choices[0].delta
if 'content' in delta:
completion_response['content'] += delta['content']
completion_response['timings']['predicted_n'] += 1
else:
assert len(chat_completion.choices) == 1
completion_response = {
'content': chat_completion.choices[0].message.content,
'timings': {
'predicted_n': chat_completion.usage.completion_tokens
}
}
if debug:
print("OAI response formatted to llama.cpp:", completion_response)
return completion_response
async def request_embedding(content, base_url):
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/embedding',
json={
"content": content,
}) as response:
assert response.status == 200
response_json = await response.json()
return response_json['embedding']
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']
assert len(content) > 0, "no token predicted"
if expected_predicted_n is not None:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
f' {n_predicted} <> {expected_predicted_n}')
if re_content is not None:
re_content = '^.*' + re_content.replace('<or>', '|') + '.*$'
assert re.match(re_content, content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL), (
f'invalid tokens predicted:'
f' ```\n{content}\n``` do not match /{re_content}/')
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
print(f"Waiting for all {n_tasks} tasks results...")
for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result)
return n_completions
async def wait_for_health_status(context,
base_url,
expected_http_status_code,
expected_health_status,
params=None,
slots_idle=None,
slots_processing=None,
expected_slots=None):
if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}")
timeout = 3 # seconds
interval = 0.5
counter = 0
async with aiohttp.ClientSession() as session:
while True:
async with await session.get(f'{base_url}/health', params=params) as health_response:
status_code = health_response.status
health = await health_response.json()
if context.debug:
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
f"'{base_url}/health'?{params} is {health}")
if (status_code == expected_http_status_code
and health['status'] == expected_health_status
and (slots_idle is None or health['slots_idle'] == slots_idle)
and (slots_processing is None or health['slots_processing'] == slots_processing)):
if expected_slots is not None:
assert_slots_status(health['slots'], expected_slots)
return
if (status_code == expected_http_status_code
and health['status'] == expected_health_status
and (slots_idle is None or health['slots_idle'] == slots_idle)
and (slots_processing is None or health['slots_processing'] == slots_processing)):
if expected_slots is not None:
assert_slots_status(health['slots'], expected_slots)
return
await asyncio.sleep(interval)
counter += interval
if counter >= timeout:
# Sometimes health requests are triggered after completions are predicted
if expected_http_status_code == 503:
if len(context.tasks_result) == 0:
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
" busy health check missed, probably too fast inference\x1b[0m")
n_completions = await gather_tasks_results(context)
if n_completions > 0:
return
assert False, 'timeout exceeded'
def assert_embeddings(embeddings):
assert len(embeddings) > 0
embeddings_computed = False
for emb in embeddings:
if emb != 0:
embeddings_computed = True
assert embeddings_computed, f"Embeddings: {embeddings}"
async def request_slots_status(context, expected_slots):
async with aiohttp.ClientSession() as session:
async with await session.get(f'{context.base_url}/slots') as slots_response:
assert slots_response.status == 200
slots = await slots_response.json()
assert_slots_status(slots, expected_slots)
def assert_slots_status(slots, expected_slots):
assert len(slots) == len(expected_slots)
for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
for key in expected:
assert expected[key] == slot[key], (f"invalid slot {slot_id}"
f" expected[{key}] != slot[{key}]"
f" = {expected[key]} != {slot[key]}")
def start_server_background(context):
context.server_path = '../../../build/bin/server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_args = [
'--host', context.server_fqdn,
'--port', context.server_port,
'--model', context.model_file
]
if context.server_continuous_batching:
server_args.append('--cont-batching')
if context.server_embeddings:
server_args.append('--embedding')
if context.model_alias is not None:
server_args.extend(['--alias', context.model_alias])
if context.n_ctx is not None:
server_args.extend(['--ctx-size', context.n_ctx])
if context.n_slots is not None:
server_args.extend(['--parallel', context.n_slots])
if context.n_server_predict is not None:
server_args.extend(['--n-predict', context.n_server_predict])
if context.server_api_key is not None:
server_args.extend(['--api-key', context.server_api_key])
if context.debug:
server_args.append('--verbose')
print(f"starting server with: {context.server_path}", *server_args)
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
close_fds=True)
print(f"server pid={context.server_process.pid}")

View File

@ -0,0 +1,21 @@
# run with ./test.sh --tags wrong_usage
@wrong_usage
Feature: Wrong usage of llama.cpp server
#3969 The user must always set --n-predict option
# to cap the number of tokens any completion request can generate
# or pass n_predict/max_tokens in the request.
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file stories260K.gguf
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
Given a prompt:
"""
Go to: infinite loop
"""
# Uncomment below to fix the issue
#And 128 max tokens to predict
Given concurrent completion requests
Then all prompts are predicted

View File

@ -0,0 +1,3 @@
aiohttp~=3.9.3
behave~=1.2.6
openai~=0.25.0

12
examples/server/tests/tests.sh Executable file
View File

@ -0,0 +1,12 @@
#!/bin/bash
set -eu
if [ $# -lt 1 ]
then
# Start @llama.cpp scenario
behave --summary --stop --no-capture --exclude 'issues|wrong_usages' --tags llama.cpp
else
behave "$@"
fi