From 52af78260884013abc3f2fc3669e68f45ec2bfb5 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 25 Oct 2023 13:14:24 +0300 Subject: [PATCH] cuda : new cublas gemm branch for multi-batch quantized src0 --- ggml-cuda.cu | 115 ++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 113 insertions(+), 2 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 7bbef0a1a..ca49d73bf 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -6304,7 +6304,6 @@ inline void ggml_cuda_op_mul_mat_cublas( const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; - //printf("F16: row_diff: %ld, src1_ncols: %ld, ne10: %ld, ne00: %ld, ldc: %d\n", row_diff, src1_ncols, ne10, ne00, ldc); CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); CUBLAS_CHECK( cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, @@ -7049,9 +7048,10 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); } -static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ +static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); + GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -7202,6 +7202,115 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_cuda_pool_free(dst_f16, dst_as); } +static void ggml_cuda_mul_mat_mat_deq_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + int id; + CUDA_CHECK(cudaGetDevice(&id)); + + // require tensor cores + const int compute_capability = g_compute_capabilities[id]; + GGML_ASSERT(compute_capability >= CC_VOLTA); + + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + + //GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); + + GGML_ASSERT(ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00); + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; GGML_UNUSED(ne02); + const int64_t ne03 = src0->ne[3]; GGML_UNUSED(ne03); + + const int64_t nb01 = src0->nb[1]; GGML_UNUSED(nb01); + const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02); + const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03); + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; GGML_UNUSED(ne12); + const int64_t ne13 = src1->ne[3]; GGML_UNUSED(ne13); + + const int64_t nb11 = src1->nb[1]; GGML_UNUSED(nb11); + const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12); + const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13); + + const int64_t ne1 = ggml_nelements(src1); + const int64_t ne = ggml_nelements(dst); + + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], main_stream)); + + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + void * src0_ddq = src0_extra->data_device[g_main_device]; + + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; + + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; + + if (ggml_is_contiguous(src0)) { + // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 + half * src0_as_f16 = nullptr; + size_t src0_as = 0; + if (src0->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + const size_t ne = ne01*ne00; + src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as); + to_fp16_cuda(src0_ddq, src0_as_f16, ne, main_stream); + } + + const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_ddq : src0_as_f16; + + half * src1_as_f16 = nullptr; + size_t src1_as = 0; + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + const size_t ne = ne11*ne10; + src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); + to_fp16_cuda(src1_ddf, src1_as_f16, ne, main_stream); + } + + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf : src1_as_f16; + + size_t dst_as = 0; + half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne01*ne11 * sizeof(half), &dst_as); + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], main_stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16, CUDA_R_16F, ne01, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16, dst_ddf, ne01*ne11, main_stream); + + ggml_cuda_pool_free(dst_f16, dst_as); + + if (src0_as != 0) { + ggml_cuda_pool_free(src0_as_f16, src0_as); + } + + if (src1_as != 0) { + ggml_cuda_pool_free(src1_as_f16, src1_as); + } + } else { + GGML_ASSERT(false && "not implemented"); + } +} + static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU; @@ -7231,6 +7340,8 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 } else if (all_on_device && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { // KQ + KQV multi-batch ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst); + } else if (all_on_device && (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) && src1->ne[1] > 1) { + ggml_cuda_mul_mat_mat_deq_cublas(src0, src1, dst); } else if (src0->type == GGML_TYPE_F32) { ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {