mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
llama : default sampling changes + greedy update (#9897)
* llama : deprecate softmax sampler + fix dist sampler ggml-ci * tests : replace macros with functions ggml-ci * sampling : change temperature sampler logic For t <= 0.0f, keep the max logit intact and set the rest to -inf * cont : no need for special "greedy" logic top-k == 1 is the same * tests : init prob correctly * llama : handle temp <= 0.0 in the temp_ext sampler too ggml-ci * cont : avoid extra loop in temperature sampler for sub-zero temp ggml-ci
This commit is contained in:
parent
bc21975084
commit
55e47786e3
@ -171,60 +171,46 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.penalize_nl,
|
||||
params.ignore_eos));
|
||||
|
||||
if (params.temp > 0.0f) {
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
if (params.n_probs > 0) {
|
||||
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
|
||||
//
|
||||
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
|
||||
// it is much faster, since we avoid sorting all tokens and should give a good approximation
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
|
||||
return result;
|
||||
|
@ -46,7 +46,6 @@ actor LlamaContext {
|
||||
let sparams = llama_sampler_chain_default_params()
|
||||
self.sampling = llama_sampler_chain_init(sparams)
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
|
||||
}
|
||||
|
||||
|
@ -42,7 +42,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
// tokenize prompt
|
||||
@ -107,7 +106,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
@ -171,7 +169,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
|
@ -185,8 +185,6 @@ int main(int argc, char ** argv) {
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
|
||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
@ -629,7 +627,6 @@ int main(int argc, char ** argv) {
|
||||
common_sampler_free(drafts[s].smpl);
|
||||
}
|
||||
|
||||
llama_sampler_free(softmax);
|
||||
llama_batch_free(batch_dft);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
|
@ -217,6 +217,7 @@ extern "C" {
|
||||
|
||||
typedef struct llama_token_data_array {
|
||||
// TODO: consider SoA
|
||||
// NOTE: this pointer can be modified by the samplers
|
||||
llama_token_data * data;
|
||||
size_t size;
|
||||
int64_t selected; // this is the index in the data array (i.e. not the token id)
|
||||
@ -1069,12 +1070,13 @@ extern "C" {
|
||||
|
||||
// available samplers:
|
||||
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
|
||||
DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
|
||||
"will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
|
||||
@ -1090,6 +1092,8 @@ extern "C" {
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
|
||||
|
||||
/// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
|
||||
|
||||
/// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
|
||||
|
@ -63,6 +63,30 @@ static void llama_log_softmax(float * array, size_t size) {
|
||||
}
|
||||
*/
|
||||
|
||||
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
|
||||
if (temp <= 0.0f) {
|
||||
// find the token with the highest logit and set the rest to -inf
|
||||
size_t max_i = 0;
|
||||
float max_l = cur_p->data[0].logit;
|
||||
|
||||
for (size_t i = 1; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i ].logit > max_l) {
|
||||
cur_p->data[max_i].logit = -INFINITY;
|
||||
max_i = i;
|
||||
max_l = cur_p->data[i].logit;
|
||||
} else {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].logit /= temp;
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
|
||||
GGML_ASSERT(cur_p->size > 0);
|
||||
|
||||
@ -427,6 +451,9 @@ static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*
|
||||
|
||||
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
||||
|
||||
llama_sampler_softmax_impl(cur_p);
|
||||
|
||||
cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
|
||||
}
|
||||
|
||||
@ -912,9 +939,8 @@ static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*
|
||||
|
||||
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
const auto * ctx = (llama_sampler_temp *) smpl->ctx;
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].logit /= ctx->temp;
|
||||
}
|
||||
|
||||
llama_sampler_temp_impl(cur_p, ctx->temp);
|
||||
}
|
||||
|
||||
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
|
||||
@ -961,6 +987,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
|
||||
if (ctx->delta > 0) {
|
||||
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
|
||||
const float max_temp = ctx->temp + ctx->delta;
|
||||
|
||||
float exponent_val = ctx->exponent;
|
||||
|
||||
// no need to do anything if there is only one (or zero) candidates
|
||||
@ -998,9 +1025,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
|
||||
#endif
|
||||
|
||||
// Apply the dynamically calculated temperature scaling
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].logit /= dyn_temp;
|
||||
}
|
||||
llama_sampler_temp_impl(cur_p, dyn_temp);
|
||||
|
||||
// Re-compute softmax probabilities after scaling logits with dynamic temperature
|
||||
const double max_l_double = cur_p->data[0].logit;
|
||||
@ -1024,9 +1049,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].logit /= ctx->temp;
|
||||
}
|
||||
llama_sampler_temp_impl(cur_p, ctx->temp);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -18,203 +18,176 @@ static void dump(const llama_token_data_array * cur_p) {
|
||||
|
||||
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
|
||||
|
||||
#define APPLY(__cnstr, __cur_p) do { \
|
||||
auto * cnstr = (__cnstr); \
|
||||
llama_sampler_apply(cnstr, (__cur_p)); \
|
||||
llama_sampler_free(cnstr); \
|
||||
} while(0)
|
||||
struct sampler_tester {
|
||||
sampler_tester(size_t n_vocab) {
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(token_id);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
||||
const size_t n_vocab = probs.size();
|
||||
cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
|
||||
sampler_tester(const std::vector<float> & probs, const std::vector<float> & probs_expected) : probs_expected(probs_expected) {
|
||||
cur.reserve(probs.size());
|
||||
for (llama_token token_id = 0; token_id < (llama_token)probs.size(); token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, probs[token_id]});
|
||||
}
|
||||
|
||||
cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
|
||||
void apply(llama_sampler * sampler) {
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
llama_sampler_free(sampler);
|
||||
}
|
||||
|
||||
void check() {
|
||||
GGML_ASSERT(cur_p.size == probs_expected.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - probs_expected[i]) < 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p;
|
||||
|
||||
private:
|
||||
const std::vector<float> probs_expected;
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
};
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_top_k(k), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
static void test_temp(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_temp(temp));
|
||||
tester.apply(llama_sampler_init_dist(0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
static void test_temp_ext(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp, float delta, float exponent) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_temp_ext(temp, delta, exponent));
|
||||
tester.apply(llama_sampler_init_dist (0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
||||
const size_t n_vocab = probs.size();
|
||||
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & probs_expected, int k) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_top_k(k));
|
||||
tester.apply(llama_sampler_init_dist (0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_top_p(p, 1));
|
||||
tester.apply(llama_sampler_init_dist (0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
|
||||
const size_t n_vocab = probs.size();
|
||||
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & probs_expected, float z) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_tail_free(z, 1));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
||||
}
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_min_p(p, 1));
|
||||
tester.apply(llama_sampler_init_dist (0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_typical(p, 1), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
tester.check();
|
||||
}
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p, float t) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_xtc(p, t, 0, 0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(llama_sampler_init_typical(p, 1));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_penalties(
|
||||
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
||||
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
|
||||
const std::vector<float> & probs_expected, float repeat_penalty, float alpha_frequency, float alpha_presence
|
||||
) {
|
||||
GGML_ASSERT(probs.size() == expected_probs.size());
|
||||
GGML_ASSERT(probs.size() == probs_expected.size());
|
||||
|
||||
sampler_tester tester(probs, probs_expected);
|
||||
|
||||
const size_t n_vocab = probs.size();
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
|
||||
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
|
||||
|
||||
for (size_t i = 0; i < last_tokens.size(); i++) {
|
||||
llama_sampler_accept(sampler, last_tokens[i]);
|
||||
}
|
||||
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(sampler, &cur_p);
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
DUMP(&tester.cur_p);
|
||||
tester.apply(sampler);
|
||||
tester.apply(llama_sampler_init_dist(0));
|
||||
DUMP(&tester.cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
|
||||
}
|
||||
tester.check();
|
||||
}
|
||||
|
||||
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
|
||||
) {
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(token_id);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
sampler_tester tester(n_vocab);
|
||||
|
||||
llama_token min_token_id = 0;
|
||||
const llama_token max_token_id = n_vocab-1;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
|
||||
case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break;
|
||||
case 'f': GGML_ABORT("tail_free test not implemented");
|
||||
case 'y': GGML_ABORT("typical test not implemented");
|
||||
case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
|
||||
case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
|
||||
case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break;
|
||||
case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break;
|
||||
case 't': GGML_ABORT("temperature test not implemented");
|
||||
default : GGML_ABORT("Unknown sampler");
|
||||
}
|
||||
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
|
||||
tester.apply(llama_sampler_init_dist(0));
|
||||
|
||||
auto & cur_p = tester.cur_p;
|
||||
|
||||
const int size = cur_p.size;
|
||||
|
||||
@ -307,21 +280,26 @@ static void test_perf() {
|
||||
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
|
||||
BENCH(llama_sampler_init_softmax (), data, 32);
|
||||
}
|
||||
|
||||
int main(void) {
|
||||
ggml_time_init();
|
||||
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
||||
test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
|
||||
test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f);
|
||||
|
||||
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f);
|
||||
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f);
|
||||
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1);
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3);
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
|
||||
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
|
||||
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f);
|
||||
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
|
||||
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
|
||||
|
Loading…
Reference in New Issue
Block a user