llama : default sampling changes + greedy update (#9897)

* llama : deprecate softmax sampler + fix dist sampler

ggml-ci

* tests : replace macros with functions

ggml-ci

* sampling : change temperature sampler logic

For t <= 0.0f, keep the max logit intact and set the rest to -inf

* cont : no need for special "greedy" logic

top-k == 1 is the same

* tests : init prob correctly

* llama : handle temp <= 0.0 in the temp_ext sampler too

ggml-ci

* cont : avoid extra loop in temperature sampler for sub-zero temp

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-10-21 09:46:40 +03:00 committed by GitHub
parent bc21975084
commit 55e47786e3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 202 additions and 218 deletions

View File

@ -171,7 +171,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.penalize_nl, params.penalize_nl,
params.ignore_eos)); params.ignore_eos));
if (params.temp > 0.0f) {
if (params.mirostat == 0) { if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) { for (const auto & cnstr : params.samplers) {
switch (cnstr) { switch (cnstr) {
@ -203,7 +202,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ASSERT(false && "unknown sampler type"); GGML_ASSERT(false && "unknown sampler type");
} }
} }
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed)); llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) { } else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp)); llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
@ -214,18 +212,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
} else { } else {
GGML_ASSERT(false && "unknown mirostat version"); GGML_ASSERT(false && "unknown mirostat version");
} }
} else {
if (params.n_probs > 0) {
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
//
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
// it is much faster, since we avoid sorting all tokens and should give a good approximation
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
}
return result; return result;
} }

View File

@ -46,7 +46,6 @@ actor LlamaContext {
let sparams = llama_sampler_chain_default_params() let sparams = llama_sampler_chain_default_params()
self.sampling = llama_sampler_chain_init(sparams) self.sampling = llama_sampler_chain_init(sparams)
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4)) llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234)) llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
} }

View File

@ -42,7 +42,6 @@ int main(int argc, char ** argv) {
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed)); llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
// tokenize prompt // tokenize prompt
@ -107,7 +106,6 @@ int main(int argc, char ** argv) {
llama_sampler * smpl2 = llama_sampler_chain_init(sparams); llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed)); llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
printf("\nsecond run: %s", params.prompt.c_str()); printf("\nsecond run: %s", params.prompt.c_str());
@ -171,7 +169,6 @@ int main(int argc, char ** argv) {
llama_sampler * smpl3 = llama_sampler_chain_init(sparams); llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed)); llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
printf("\nsingle seq run: %s", params.prompt.c_str()); printf("\nsingle seq run: %s", params.prompt.c_str());

View File

@ -185,8 +185,6 @@ int main(int argc, char ** argv) {
// target model sampling context (reuse the llama_context's sampling instance) // target model sampling context (reuse the llama_context's sampling instance)
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams); struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
struct llama_sampler * softmax = llama_sampler_init_softmax();
// draft sequence data // draft sequence data
std::vector<seq_draft> drafts(n_seq_dft); std::vector<seq_draft> drafts(n_seq_dft);
@ -629,7 +627,6 @@ int main(int argc, char ** argv) {
common_sampler_free(drafts[s].smpl); common_sampler_free(drafts[s].smpl);
} }
llama_sampler_free(softmax);
llama_batch_free(batch_dft); llama_batch_free(batch_dft);
llama_free(ctx_tgt); llama_free(ctx_tgt);

View File

@ -217,6 +217,7 @@ extern "C" {
typedef struct llama_token_data_array { typedef struct llama_token_data_array {
// TODO: consider SoA // TODO: consider SoA
// NOTE: this pointer can be modified by the samplers
llama_token_data * data; llama_token_data * data;
size_t size; size_t size;
int64_t selected; // this is the index in the data array (i.e. not the token id) int64_t selected; // this is the index in the data array (i.e. not the token id)
@ -1069,12 +1070,13 @@ extern "C" {
// available samplers: // available samplers:
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void); LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed); LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void); DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
"will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k); LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
@ -1090,6 +1092,8 @@ extern "C" {
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep); LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
/// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t); LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
/// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.

View File

@ -63,6 +63,30 @@ static void llama_log_softmax(float * array, size_t size) {
} }
*/ */
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
if (temp <= 0.0f) {
// find the token with the highest logit and set the rest to -inf
size_t max_i = 0;
float max_l = cur_p->data[0].logit;
for (size_t i = 1; i < cur_p->size; ++i) {
if (cur_p->data[i ].logit > max_l) {
cur_p->data[max_i].logit = -INFINITY;
max_i = i;
max_l = cur_p->data[i].logit;
} else {
cur_p->data[i].logit = -INFINITY;
}
}
return;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= temp;
}
}
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
GGML_ASSERT(cur_p->size > 0); GGML_ASSERT(cur_p->size > 0);
@ -427,6 +451,9 @@ static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_dist *) smpl->ctx; auto * ctx = (llama_sampler_dist *) smpl->ctx;
llama_sampler_softmax_impl(cur_p);
cur_p->selected = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
} }
@ -912,9 +939,8 @@ static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_temp *) smpl->ctx; const auto * ctx = (llama_sampler_temp *) smpl->ctx;
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= ctx->temp; llama_sampler_temp_impl(cur_p, ctx->temp);
}
} }
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
@ -961,6 +987,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
if (ctx->delta > 0) { if (ctx->delta > 0) {
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
const float max_temp = ctx->temp + ctx->delta; const float max_temp = ctx->temp + ctx->delta;
float exponent_val = ctx->exponent; float exponent_val = ctx->exponent;
// no need to do anything if there is only one (or zero) candidates // no need to do anything if there is only one (or zero) candidates
@ -998,9 +1025,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
#endif #endif
// Apply the dynamically calculated temperature scaling // Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < cur_p->size; ++i) { llama_sampler_temp_impl(cur_p, dyn_temp);
cur_p->data[i].logit /= dyn_temp;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature // Re-compute softmax probabilities after scaling logits with dynamic temperature
const double max_l_double = cur_p->data[0].logit; const double max_l_double = cur_p->data[0].logit;
@ -1024,9 +1049,7 @@ static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_toke
} }
#endif #endif
} else { } else {
for (size_t i = 0; i < cur_p->size; ++i) { llama_sampler_temp_impl(cur_p, ctx->temp);
cur_p->data[i].logit /= ctx->temp;
}
} }
} }

View File

@ -18,203 +18,176 @@ static void dump(const llama_token_data_array * cur_p) {
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0) #define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
#define APPLY(__cnstr, __cur_p) do { \ struct sampler_tester {
auto * cnstr = (__cnstr); \ sampler_tester(size_t n_vocab) {
llama_sampler_apply(cnstr, (__cur_p)); \
llama_sampler_free(cnstr); \
} while(0)
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_top_k(k), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
}
}
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_softmax(), &cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
}
}
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
DUMP(&cur_p);
APPLY(llama_sampler_init_typical(p, 1), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_penalties(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
) {
GGML_ASSERT(probs.size() == expected_probs.size());
const size_t n_vocab = probs.size();
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
for (size_t i = 0; i < last_tokens.size(); i++) {
llama_sampler_accept(sampler, last_tokens[i]);
}
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
APPLY(sampler, &cur_p);
APPLY(llama_sampler_init_softmax(), &cur_p);
DUMP(&cur_p);
GGML_ASSERT(cur_p.size == expected_probs.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
) {
std::vector<llama_token_data> cur;
cur.reserve(n_vocab); cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
const float logit = logf(token_id); const float logit = logf(token_id);
cur.emplace_back(llama_token_data{token_id, logit, 0.0f}); cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
} }
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
}
sampler_tester(const std::vector<float> & probs, const std::vector<float> & probs_expected) : probs_expected(probs_expected) {
cur.reserve(probs.size());
for (llama_token token_id = 0; token_id < (llama_token)probs.size(); token_id++) {
const float logit = logf(probs[token_id]);
cur.emplace_back(llama_token_data{token_id, logit, probs[token_id]});
}
cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
}
void apply(llama_sampler * sampler) {
llama_sampler_apply(sampler, &cur_p);
llama_sampler_free(sampler);
}
void check() {
GGML_ASSERT(cur_p.size == probs_expected.size());
for (size_t i = 0; i < cur_p.size; i++) {
GGML_ASSERT(fabs(cur_p.data[i].p - probs_expected[i]) < 1e-5);
}
}
llama_token_data_array cur_p;
private:
const std::vector<float> probs_expected;
std::vector<llama_token_data> cur;
};
static void test_temp(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_temp(temp));
tester.apply(llama_sampler_init_dist(0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_temp_ext(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp, float delta, float exponent) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_temp_ext(temp, delta, exponent));
tester.apply(llama_sampler_init_dist (0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & probs_expected, int k) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_top_k(k));
tester.apply(llama_sampler_init_dist (0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_top_p(p, 1));
tester.apply(llama_sampler_init_dist (0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & probs_expected, float z) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_tail_free(z, 1));
DUMP(&tester.cur_p);
tester.check();
}
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_min_p(p, 1));
tester.apply(llama_sampler_init_dist (0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p, float t) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_xtc(p, t, 0, 0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_typical(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_typical(p, 1));
DUMP(&tester.cur_p);
tester.check();
}
static void test_penalties(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & probs_expected, float repeat_penalty, float alpha_frequency, float alpha_presence
) {
GGML_ASSERT(probs.size() == probs_expected.size());
sampler_tester tester(probs, probs_expected);
const size_t n_vocab = probs.size();
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
for (size_t i = 0; i < last_tokens.size(); i++) {
llama_sampler_accept(sampler, last_tokens[i]);
}
DUMP(&tester.cur_p);
tester.apply(sampler);
tester.apply(llama_sampler_init_dist(0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
) {
sampler_tester tester(n_vocab);
llama_token min_token_id = 0; llama_token min_token_id = 0;
const llama_token max_token_id = n_vocab-1; const llama_token max_token_id = n_vocab-1;
for (auto s : samplers_sequence) { for (auto s : samplers_sequence) {
switch (s){ switch (s){
case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break; case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break;
case 'f': GGML_ABORT("tail_free test not implemented"); case 'f': GGML_ABORT("tail_free test not implemented");
case 'y': GGML_ABORT("typical test not implemented"); case 'y': GGML_ABORT("typical test not implemented");
case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break; case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break;
case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break; case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break;
case 't': GGML_ABORT("temperature test not implemented"); case 't': GGML_ABORT("temperature test not implemented");
default : GGML_ABORT("Unknown sampler"); default : GGML_ABORT("Unknown sampler");
} }
APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests tester.apply(llama_sampler_init_dist(0));
auto & cur_p = tester.cur_p;
const int size = cur_p.size; const int size = cur_p.size;
@ -307,21 +280,26 @@ static void test_perf() {
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32); BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32); BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32); BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
BENCH(llama_sampler_init_softmax (), data, 32);
} }
int main(void) { int main(void) {
ggml_time_init(); ggml_time_init();
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f);
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f);
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0); test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f); test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);