server : refactor ctx_sampling init + n_ctx + names

This commit is contained in:
Georgi Gerganov 2023-10-22 16:57:05 +03:00
parent ef18f4d579
commit 569ebf11cf
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

View File

@ -341,47 +341,55 @@ struct llama_client_slot
{
int id;
int task_id = -1;
struct slot_params params;
slot_state state = IDLE;
slot_command command = NONE;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t i_batch = -1;
size_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
int32_t multibyte_pending = 0;
json prompt;
std::string generated_text;
llama_token sampled;
std::vector<llama_token> cache_tokens;
std::vector<completion_token_output> generated_token_probs;
slot_state state = IDLE;
slot_command command = NONE;
bool infill = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
std::string stopping_word;
int32_t multibyte_pending = 0;
// sampling
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
// multimodal
std::vector<slot_image> images;
// stats
size_t sent_count = 0;
size_t sent_token_probs_index = 0;
bool infill = false;
int64_t t_start_process_prompt;
int64_t t_start_genereration;
double t_prompt_processing; // ms
double t_token_generation; // ms
struct slot_params params;
// sampling
struct llama_sampling_params sparams;
llama_sampling_context* ctx_sampling = nullptr;
bool has_next_token = true;
// multimodal
std::vector<slot_image> images;
void reset() {
num_prompt_tokens = 0;
generated_text = "";
@ -397,13 +405,6 @@ struct llama_client_slot
infill = false;
generated_token_probs.clear();
if (ctx_sampling != nullptr)
{
llama_sampling_free(ctx_sampling);
}
ctx_sampling = llama_sampling_init(sparams);
for (slot_image &img : images)
{
free(img.image_embedding);
@ -415,17 +416,6 @@ struct llama_client_slot
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
}
bool load_grammar()
{
if (ctx_sampling != nullptr)
{
llama_sampling_free(ctx_sampling);
}
ctx_sampling = llama_sampling_init(sparams);
return ctx_sampling != nullptr;
}
bool has_budget(gpt_params &global_params) {
n_remaining = -1;
if(params.n_predict != -1)
@ -491,33 +481,33 @@ struct llama_client_slot
struct llama_server_context
{
std::vector<llama_client_slot> slots;
// system prompt
std::string system_prompt;
bool need_update_system_prompt = false;
std::vector<llama_token> tokens_system;
int32_t num_tokens_system;
// broadcast to all clients to keep the same prompt format
std::string user_name; // this should be the anti prompt
std::string assistant_name; // this is for generate the prompt
bool multimodal = false;
clip_ctx *clp_ctx = nullptr;
int n_embd;
llama_model *model = nullptr;
llama_context *ctx = nullptr;
llama_batch batch;
bool all_slots_are_idle = false;
gpt_params params;
int n_ctx;
int n_vocab;
int max_ctx_per_slot = -1;
bool clean_kv_cache = true;
int id_gen;
clip_ctx *clp_ctx = nullptr;
gpt_params params;
llama_batch batch;
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
int32_t id_gen;
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
std::string name_user; // this should be the antiprompt
std::string name_assistant;
// slots / clients
std::vector<llama_client_slot> slots;
std::vector<task_server> queue_tasks;
std::vector<task_result> queue_results;
@ -541,7 +531,7 @@ struct llama_server_context
bool load_model(const gpt_params &params_)
{
params = params_;
if(!params.mmproj.empty()) {
if (!params.mmproj.empty()) {
multimodal = true;
LOG_TEE("Multi Modal Mode Enabled");
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
@ -550,10 +540,11 @@ struct llama_server_context
return false;
}
if(params.n_ctx < 2048) { // request larger context for the image embedding
if (params.n_ctx < 2048) { // request larger context for the image embedding
params.n_ctx = 2048;
}
}
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
@ -561,18 +552,19 @@ struct llama_server_context
return false;
}
if(multimodal) {
int n_img_embd = clip_n_mmproj_embd(clp_ctx);
n_embd = llama_n_embd(model);
if (n_img_embd != n_embd) {
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_embd);
if (multimodal) {
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
}
}
n_ctx = llama_n_ctx(ctx);
n_vocab = llama_n_vocab(model);
return true;
}
@ -581,25 +573,19 @@ struct llama_server_context
// create slots
all_slots_are_idle = true;
if (max_ctx_per_slot == -1)
{
max_ctx_per_slot = n_ctx / params.n_parallel; // split context
}
if (max_ctx_per_slot * params.n_parallel > n_ctx)
{
printf("Error: The max context per slot is more greater than model context size");
return;
}
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_TEE("Available slots:\n");
for (int i = 0; i < params.n_parallel; i++)
{
llama_client_slot slot;
slot.id = i;
slot.sparams.n_prev = max_ctx_per_slot;
slot.n_ctx = n_ctx_slot;
slot.reset();
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, max_ctx_per_slot);
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
slots.push_back(slot);
}
@ -607,7 +593,7 @@ struct llama_server_context
// empty system prompt
system_prompt = "";
num_tokens_system = 0;
system_tokens.clear();
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
@ -699,16 +685,16 @@ struct llama_server_context
{
slot->params.input_prefix = "";
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
}
// common params
else
{
slot->params.input_suffix = "";
}
if (data.count("prompt") != 0)
{
slot->prompt = data["prompt"];
@ -717,11 +703,14 @@ struct llama_server_context
{
slot->prompt = "";
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(ctx)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
@ -832,36 +821,37 @@ struct llama_server_context
}
}
}
if (!slot->load_grammar())
if (slot->ctx_sampling != nullptr)
{
return false;
llama_sampling_free(slot->ctx_sampling);
}
all_slots_are_idle = false;
slot->ctx_sampling = llama_sampling_init(slot->sparams);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
return true;
}
void kv_cache_clear() {
// clear the entire KV cache
for (int i = 0; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_rm(ctx, i, 0, -1);
}
llama_kv_cache_tokens_rm(ctx, -1, -1);
clean_kv_cache = false;
}
void update_system_prompt() {
tokens_system = ::llama_tokenize(ctx, system_prompt, true);
num_tokens_system = tokens_system.size();
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
batch.n_tokens = num_tokens_system;
llama_batch_clear(batch);
kv_cache_clear();
for (int32_t i = 0; i < batch.n_tokens; ++i)
{
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0)
@ -873,11 +863,11 @@ struct llama_server_context
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, num_tokens_system);
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
}
LOG_TEE("system prompt updated\n");
need_update_system_prompt = false;
system_need_update = false;
}
void notify_system_prompt_changed() {
@ -890,8 +880,8 @@ struct llama_server_context
all_slots_are_idle = true;
// wait until system prompt load
need_update_system_prompt = true;
while (need_update_system_prompt) {
system_need_update = true;
while (system_need_update) {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
// system prompt loaded, continue
@ -899,8 +889,8 @@ struct llama_server_context
void process_system_prompt_data(const json &sys_props) {
system_prompt = sys_props.value("prompt", "");
user_name = sys_props.value("anti_prompt", "");
assistant_name = sys_props.value("assistant_name", "");
name_user = sys_props.value("anti_prompt", "");
name_assistant = sys_props.value("assistant_name", "");
if (slots.size() > 0)
{
@ -908,7 +898,7 @@ struct llama_server_context
}
else
{
need_update_system_prompt = true;
system_need_update = true;
}
}
@ -1036,14 +1026,14 @@ struct llama_server_context
}
// check the limits
if (
slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
{
slot.stopped_limit = true;
slot.has_next_token = false;
}
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(ctx)) {
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(ctx))
{
slot.stopped_eos = true;
slot.has_next_token = false;
LOG_VERBOSE("eos token found", {});
@ -1111,12 +1101,12 @@ struct llama_server_context
return get_formated_generation(slots[0]);
}
json get_formated_generation(llama_client_slot & slot) {
json get_formated_generation(llama_client_slot &slot) {
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(ctx));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
return json{
{"n_ctx", max_ctx_per_slot},
return json {
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temp", slot.sparams.temp},
@ -1219,7 +1209,8 @@ struct llama_server_context
res.id = slot.task_id;
res.error = false;
res.stop = true;
static const int n_embd = llama_n_embd(model);
const int n_embd = llama_n_embd(model);
if (!params.embedding)
{
LOG_WARNING("embedding disabled", {
@ -1229,7 +1220,9 @@ struct llama_server_context
{
{"embedding", std::vector<float>(n_embd, 0.0f)},
};
} else {
}
else
{
const float *data = llama_get_embeddings(ctx);
std::vector<float> embedding(data, data + n_embd);
res.result_json = json
@ -1312,6 +1305,7 @@ struct llama_server_context
n_eval = n_batch;
}
const int n_embd = llama_n_embd(model);
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
if (llama_decode(ctx, batch_img))
{
@ -1400,7 +1394,7 @@ struct llama_server_context
process_tasks();
// update the system prompt wait until all slots are idle state
if (need_update_system_prompt)
if (system_need_update)
{
LOG_TEE("updating system prompt\n");
update_system_prompt();
@ -1421,7 +1415,7 @@ struct llama_server_context
for (llama_client_slot &slot : slots)
{
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t)max_ctx_per_slot)
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// Shift context
const int n_left = slot.n_past - slot.params.n_keep - 1;
@ -1478,7 +1472,7 @@ struct llama_server_context
slot.i_batch = batch.n_tokens;
llama_batch_add(batch, slot.sampled, num_tokens_system + slot.n_past, { slot.id }, true);
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_decoded += 1;
slot.n_past += 1;
@ -1537,21 +1531,21 @@ struct llama_server_context
{
if (slot.params.n_keep < 0)
{
slot.params.n_keep = (int)slot.num_prompt_tokens;
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(max_ctx_per_slot - 4, slot.params.n_keep);
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
//if input prompt is too big, truncate like normal
if (slot.num_prompt_tokens >= (size_t)max_ctx_per_slot)
if (slot.num_prompt_tokens >= slot.n_ctx)
{
// applied bug of #3661
const int n_left = max_ctx_per_slot - slot.params.n_keep;
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
// Use half the left-over space in the context for the prompt
new_tokens.insert(new_tokens.end(), prompt_tokens.end() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", max_ctx_per_slot},
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
@ -1559,7 +1553,7 @@ struct llama_server_context
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < (size_t)max_ctx_per_slot);
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
const size_t ps = slot.num_prompt_tokens;
std::fill(slot.ctx_sampling->prev.begin(), slot.ctx_sampling->prev.end() - ps, 0);
@ -1569,12 +1563,13 @@ struct llama_server_context
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, num_tokens_system + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, num_tokens_system + slot.n_past, -1);
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
slot.cache_tokens = prompt_tokens;
if (slot.n_past == (int) slot.num_prompt_tokens)
if (slot.n_past == slot.num_prompt_tokens)
{
// we have to evaluate at least 1 token to generate logits.
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
@ -1593,7 +1588,7 @@ struct llama_server_context
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
llama_batch_add(batch, prefix_tokens[slot.n_past], num_tokens_system + slot.n_past, { slot.id }, false);
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
}
if (has_images && !ingest_images(slot, n_batch))
@ -1842,15 +1837,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "-cps" || arg == "--ctx-per-slot" || arg == "--ctx_per_slot")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
llama.max_ctx_per_slot = std::stoi(argv[i]);
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
@ -2227,8 +2213,8 @@ int main(int argc, char **argv)
{
res.set_header("Access-Control-Allow-Origin", "*");
json data = {
{ "user_name", llama.user_name.c_str() },
{ "assistant_name", llama.assistant_name.c_str() }
{ "user_name", llama.name_user.c_str() },
{ "assistant_name", llama.name_assistant.c_str() }
};
res.set_content(data.dump(), "application/json");
});
@ -2434,7 +2420,7 @@ int main(int argc, char **argv)
svr.set_base_dir(sparams.public_path);
// to make it ctrl+clickable:
printf("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
LOG_INFO("HTTP server listening", {
{"hostname", sparams.hostname},