Leverage mmap for offloading tensors to GPU (#1597)

* Rebase to latest

* Show progress

* Add assert to make sure we only allocate temp buffer for non-CPU backend tensor

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
Howard Su 2023-06-12 20:44:16 +08:00 committed by GitHub
parent 8c0a10e64d
commit 58970a4c39
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 56 additions and 115 deletions

View File

@ -1713,8 +1713,7 @@ void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
(void) dst; (void) dst;
} }
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
FILE * fp = fopen(fname, "rb");
int nrows = ggml_nrows(tensor); int nrows = ggml_nrows(tensor);
const size_t nb1 = tensor->nb[1]; const size_t nb1 = tensor->nb[1];
ggml_backend backend = tensor->backend; ggml_backend backend = tensor->backend;
@ -1748,35 +1747,19 @@ void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const
int64_t nrows_split = row_high - row_low; int64_t nrows_split = row_high - row_low;
const size_t offset_split = offset + row_low*nb1; const size_t offset_split = row_low*nb1;
const size_t size = ggml_nbytes_split(tensor, nrows_split); const size_t size = ggml_nbytes_split(tensor, nrows_split);
void * buf; void * buf;
CUDA_CHECK(cudaMalloc(&buf, size)); CUDA_CHECK(cudaMalloc(&buf, size));
void * buf_host = malloc(size); void * buf_host = (char*)data + offset_split;
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET);
#else
int ret = fseek(fp, (long) offset_split, SEEK_SET);
#endif
GGML_ASSERT(ret == 0); // same
size_t ret2 = fread(buf_host, size, 1, fp);
if (ret2 != 1) {
fprintf(stderr, "unexpectedly reached end of file");
exit(1);
}
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();
free(buf_host);
extra->data_device[id] = buf; extra->data_device[id] = buf;
} }
tensor->extra = extra; tensor->extra = extra;
fclose(fp);
} }
void ggml_cuda_free_data(struct ggml_tensor * tensor) { void ggml_cuda_free_data(struct ggml_tensor * tensor) {

View File

@ -24,7 +24,8 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
void * ggml_cuda_host_malloc(size_t size); void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr); void ggml_cuda_host_free(void * ptr);
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cuda_free_data(struct ggml_tensor * tensor); void ggml_cuda_free_data(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device); void ggml_cuda_set_main_device(int main_device);

View File

@ -1167,7 +1167,7 @@ size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct g
return 0; return 0;
} }
void ggml_cl_transform_tensor(ggml_tensor * tensor) { void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
const int64_t ne0 = tensor->ne[0]; const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1]; const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2]; const int64_t ne2 = tensor->ne[2];
@ -1179,6 +1179,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
size_t q_size; size_t q_size;
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
tensor->data = data;
// copy tensor to device // copy tensor to device
for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) { for (int64_t i2 = 0; i2 < ne2; i2++) {
@ -1190,35 +1191,5 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
tensor->data = dst; tensor->data = dst;
tensor->backend = GGML_BACKEND_GPU; GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
}
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
cl_int err;
FILE * fp = fopen(fname, "rb");
const size_t size = ggml_nbytes(tensor);
cl_mem dst;
CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
void * buf_host = malloc(size);
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
#else
int ret = fseek(fp, (long) offset, SEEK_SET);
#endif
GGML_ASSERT(ret == 0); // same
size_t ret2 = fread(buf_host, size, 1, fp);
if (ret2 != 1) {
fprintf(stderr, "unexpectedly reached end of file");
exit(1);
}
clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
tensor->data = dst;
free(buf_host);
fclose(fp);
} }

View File

@ -18,8 +18,7 @@ void ggml_cl_host_free(void * ptr);
void ggml_cl_free_data(const struct ggml_tensor* tensor); void ggml_cl_free_data(const struct ggml_tensor* tensor);
void ggml_cl_transform_tensor(struct ggml_tensor * tensor); void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset);
#ifdef __cplusplus #ifdef __cplusplus
} }

107
llama.cpp
View File

@ -707,6 +707,9 @@ struct llama_model_loader {
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor; struct ggml_tensor * tensor;
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, true);
}
if (lt.ne.size() == 2) { if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else { } else {
@ -716,6 +719,9 @@ struct llama_model_loader {
ggml_set_name(tensor, lt.name.c_str()); ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, use_mmap);
}
tensor->backend = backend; tensor->backend = backend;
lt.ggml_tensor = tensor; lt.ggml_tensor = tensor;
num_ggml_tensors_created++; num_ggml_tensors_created++;
@ -731,6 +737,7 @@ struct llama_model_loader {
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0; size_t data_size = 0;
size_t prefetch_size = 0; size_t prefetch_size = 0;
size_t lock_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) { for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size; data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
@ -740,11 +747,6 @@ struct llama_model_loader {
if (use_mmap) { if (use_mmap) {
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (!lmlock) {
// Don't call the callback since the actual loading will be lazy
// and we can't measure it.
progress_callback = NULL;
}
if (lmlock) { if (lmlock) {
lmlock->init(mapping->addr); lmlock->init(mapping->addr);
} }
@ -752,20 +754,49 @@ struct llama_model_loader {
size_t done_size = 0; size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) { for (llama_load_tensor & lt : tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
continue;
}
if (progress_callback) { if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data); progress_callback((float) done_size / data_size, progress_callback_user_data);
} }
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
lt.data = (uint8_t *) lt.ggml_tensor->data; lt.data = (uint8_t *) lt.ggml_tensor->data;
load_data_for(lt);
lt.ggml_tensor->data = lt.data; // allocate temp buffer if not using mmap
done_size += lt.size; if (!use_mmap && lt.data == NULL) {
if (use_mmap && lmlock) { GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
lmlock->grow_to(done_size); lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
} }
load_data_for(lt);
switch(lt.ggml_tensor->backend) {
case GGML_BACKEND_CPU:
lt.ggml_tensor->data = lt.data;
if (use_mmap && lmlock) {
lock_size += lt.size;
lmlock->grow_to(lock_size);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#endif
default:
continue;
}
done_size += lt.size;
} }
} }
@ -1141,7 +1172,7 @@ static void llama_model_load_internal(
if (backend == GGML_BACKEND_GPU) { if (backend == GGML_BACKEND_GPU) {
vram_weights += vram_weights +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
} }
} }
@ -1196,58 +1227,14 @@ static void llama_model_load_internal(
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
} }
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CUBLAS)
{ {
ggml_cuda_set_tensor_split(tensor_split); ggml_cuda_set_tensor_split(tensor_split);
size_t done_size = 0;
size_t data_size = 0;
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
} }
}
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
ggml_backend backend = lt.ggml_tensor->backend;
if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
}
}
#elif defined(GGML_USE_CLBLAST)
{
size_t done_size = 0;
size_t data_size = 0;
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
}
}
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
}
}
#else
(void) n_batch;
(void) tensor_split;
#endif #endif
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
if (progress_callback) { if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data); progress_callback(1.0f, progress_callback_user_data);
} }