llama : llama.h formatting + comments

This commit is contained in:
Georgi Gerganov 2023-09-21 19:51:32 +02:00
parent b2debf65f2
commit 5a3369d8e8
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 181 additions and 58 deletions

View File

@ -7477,6 +7477,10 @@ float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data(); return ctx->logits.data();
} }
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
}
float * llama_get_embeddings(struct llama_context * ctx) { float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data(); return ctx->embedding.data();
} }

235
llama.h
View File

@ -66,26 +66,6 @@ extern "C" {
typedef int32_t llama_token; typedef int32_t llama_token;
typedef int32_t llama_seq_id; typedef int32_t llama_seq_id;
// data used for batch inference
typedef struct llama_batch {
int32_t n_tokens;
llama_token * token;
float * embd;
llama_pos * pos;
llama_seq_id * seq_id;
int8_t * logits; // if 0, do not extract logits for that token
// NOTE: helpers for smooth API transition - can be deprecated in the future
// for future-proof code, use the above fields instead and ignore everything below
//
// pos[i] = all_pos_0 + i*all_pos_1
//
llama_pos all_pos_0; // used if pos == NULL
llama_pos all_pos_1; // used if pos == NULL
llama_seq_id all_seq_id; // used if seq_id == NULL
} llama_batch;
enum llama_log_level { enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2, LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3, LLAMA_LOG_LEVEL_WARN = 3,
@ -146,6 +126,35 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx); typedef void (*llama_progress_callback)(float progress, void *ctx);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
//
// - token : the token ids of the input (used when embd is NULL)
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output
//
typedef struct llama_batch {
int32_t n_tokens;
llama_token * token;
float * embd;
llama_pos * pos;
llama_seq_id * seq_id;
int8_t * logits;
// NOTE: helpers for smooth API transition - can be deprecated in the future
// for future-proof code, use the above fields instead and ignore everything below
//
// pos[i] = all_pos_0 + i*all_pos_1
//
llama_pos all_pos_0; // used if pos == NULL
llama_pos all_pos_1; // used if pos == NULL
llama_seq_id all_seq_id; // used if seq_id == NULL
} llama_batch;
struct llama_context_params { struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context int32_t n_ctx; // text context
@ -239,6 +248,7 @@ extern "C" {
int32_t n_eval; int32_t n_eval;
}; };
// Helpers for getting default parameters
LLAMA_API struct llama_context_params llama_context_default_params(void); LLAMA_API struct llama_context_params llama_context_default_params(void);
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void); LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
@ -283,8 +293,10 @@ extern "C" {
// Get a string describing the model type // Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
// Returns the total size of all the tensors in the model in bytes // Returns the total size of all the tensors in the model in bytes
LLAMA_API uint64_t llama_model_size(const struct llama_model * model); LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Returns the total number of parameters in the model // Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
@ -305,7 +317,7 @@ extern "C" {
const char * path_lora, const char * path_lora,
const char * path_base_model, const char * path_base_model,
int n_threads), int n_threads),
"please use llama_model_apply_lora_from_file instead"); "use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file( LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model, const struct llama_model * model,
@ -322,20 +334,40 @@ extern "C" {
"avoid using this, it will be removed in the future, instead - count the tokens in user code"); "avoid using this, it will be removed in the future, instead - count the tokens in user code");
// Remove all tokens data of cells in [c0, c1) // Remove all tokens data of cells in [c0, c1)
LLAMA_API void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1); LLAMA_API void llama_kv_cache_tokens_rm(
struct llama_context * ctx,
int32_t c0,
int32_t c1);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1) // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
LLAMA_API void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1); LLAMA_API void llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
// Copy all tokens that belong to the specified sequence to another sequence // Copy all tokens that belong to the specified sequence to another sequence
LLAMA_API void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1); // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
LLAMA_API void llama_kv_cache_seq_cp(
struct llama_context * ctx,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
// Removes all tokens that do not belong to the specified sequence // Removes all tokens that do not belong to the specified sequence
LLAMA_API void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id); LLAMA_API void llama_kv_cache_seq_keep(
struct llama_context * ctx,
llama_seq_id seq_id);
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly // If the KV cache is RoPEd, the KV data is updated accordingly
LLAMA_API void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta); LLAMA_API void llama_kv_cache_seq_shift(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
// //
// State / sessions // State / sessions
@ -348,21 +380,35 @@ extern "C" {
// Copies the state to the specified destination address. // Copies the state to the specified destination address.
// Destination needs to have allocated enough memory. // Destination needs to have allocated enough memory.
// Returns the number of bytes copied // Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst); LLAMA_API size_t llama_copy_state_data(
struct llama_context * ctx,
uint8_t * dst);
// Set the state reading from the specified address // Set the state reading from the specified address
// Returns the number of bytes read // Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src); LLAMA_API size_t llama_set_state_data(
struct llama_context * ctx,
uint8_t * src);
// Save/load session file // Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); LLAMA_API bool llama_load_session_file(
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count);
// //
// Decoding // Decoding
// //
// Run the llama inference to obtain the logits and probabilities for the next token. // Run the llama inference to obtain the logits and probabilities for the next token(s).
// tokens + n_tokens is the provided batch of new tokens to process // tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls // n_past is the number of tokens to use from previous eval calls
// Returns 0 on success // Returns 0 on success
@ -373,7 +419,7 @@ extern "C" {
int32_t n_tokens, int32_t n_tokens,
int n_past, int n_past,
int n_threads), int n_threads),
"please use llama_decode() instead"); "use llama_decode() instead");
// Same as llama_eval, but use float matrix input directly. // Same as llama_eval, but use float matrix input directly.
// DEPRECATED: use llama_decode() instead // DEPRECATED: use llama_decode() instead
@ -383,7 +429,7 @@ extern "C" {
int32_t n_tokens, int32_t n_tokens,
int n_past, int n_past,
int n_threads), int n_threads),
"please use llama_decode() instead"); "use llama_decode() instead");
// Return batch for single sequence of tokens starting at pos_0 // Return batch for single sequence of tokens starting at pos_0
// //
@ -396,12 +442,14 @@ extern "C" {
llama_seq_id seq_id); llama_seq_id seq_id);
// Allocates a batch of tokens on the heap // Allocates a batch of tokens on the heap
// The batch needs to be freed with llama_batch_free() // The batch has to be freed with llama_batch_free()
// If embd > 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
// The rest of the llama_batch members are allocated with size n_tokens // The rest of the llama_batch members are allocated with size n_tokens
// All members are left uninitialized // All members are left uninitialized
LLAMA_API struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd); LLAMA_API struct llama_batch llama_batch_init(
int32_t n_tokens,
int32_t embd);
// Frees a batch of tokens allocated with llama_batch_init() // Frees a batch of tokens allocated with llama_batch_init()
LLAMA_API void llama_batch_free(struct llama_batch batch); LLAMA_API void llama_batch_free(struct llama_batch batch);
@ -417,11 +465,15 @@ extern "C" {
// Token logits obtained from the last call to llama_eval() // Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row // The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token // Logits for which llama_batch.logits[i] == 0 are undefined
// Rows: n_tokens // Rows: n_tokens provided with llama_batch
// Cols: n_vocab // Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx); LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Logits for the ith token. Equivalent to:
// llama_get_logits(ctx) + i*n_vocab
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
// Get the embeddings for the input // Get the embeddings for the input
// shape: [n_embd] (1-dimensional) // shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
@ -502,10 +554,21 @@ extern "C" {
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); LLAMA_API void llama_sample_repetition_penalty(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); LLAMA_API void llama_sample_frequency_and_presence_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float alpha_frequency,
float alpha_presence);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
@ -518,26 +581,54 @@ extern "C" {
float scale); float scale);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); LLAMA_API void llama_sample_softmax(
struct llama_context * ctx,
llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep); LLAMA_API void llama_sample_top_k(
struct llama_context * ctx,
llama_token_data_array * candidates,
int k,
size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); LLAMA_API void llama_sample_top_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep); LLAMA_API void llama_sample_tail_free(
struct llama_context * ctx,
llama_token_data_array * candidates,
float z,
size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); LLAMA_API void llama_sample_typical(
LLAMA_API void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates, float temp); struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
LLAMA_API DEPRECATED(void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp), LLAMA_API void llama_sample_temp(
"Use llama_sample_temp instead"); struct llama_context * ctx,
llama_token_data_array * candidates,
float temp);
LLAMA_API DEPRECATED(void llama_sample_temperature(
struct llama_context * ctx,
llama_token_data_array * candidates,
float temp),
"use llama_sample_temp instead");
/// @details Apply constraints from grammar /// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar); LLAMA_API void llama_sample_grammar(
struct llama_context * ctx,
llama_token_data_array * candidates,
const struct llama_grammar * grammar);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
@ -545,23 +636,41 @@ extern "C" {
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu); LLAMA_API llama_token llama_sample_token_mirostat(
struct llama_context * ctx,
llama_token_data_array * candidates,
float tau,
float eta,
int m,
float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu); LLAMA_API llama_token llama_sample_token_mirostat_v2(
struct llama_context * ctx,
llama_token_data_array * candidates,
float tau,
float eta,
float * mu);
/// @details Selects the token with the highest probability. /// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates); LLAMA_API llama_token llama_sample_token_greedy(
struct llama_context * ctx,
llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities. /// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); LLAMA_API llama_token llama_sample_token(
struct llama_context * ctx,
llama_token_data_array * candidates);
/// @details Accepts the sampled token into the grammar /// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token); LLAMA_API void llama_grammar_accept_token(
struct llama_context * ctx,
struct llama_grammar * grammar,
llama_token token);
// //
// Beam search // Beam search
@ -569,9 +678,10 @@ extern "C" {
struct llama_beam_view { struct llama_beam_view {
const llama_token * tokens; const llama_token * tokens;
size_t n_tokens; size_t n_tokens;
float p; // Cumulative beam probability (renormalized relative to all beams) float p; // Cumulative beam probability (renormalized relative to all beams)
bool eob; // Callback should set this to true when a beam is at end-of-beam. bool eob; // Callback should set this to true when a beam is at end-of-beam.
}; };
// Passed to beam_search_callback function. // Passed to beam_search_callback function.
@ -580,9 +690,10 @@ extern "C" {
// These pointers are valid only during the synchronous callback, so should not be saved. // These pointers are valid only during the synchronous callback, so should not be saved.
struct llama_beams_state { struct llama_beams_state {
struct llama_beam_view * beam_views; struct llama_beam_view * beam_views;
size_t n_beams; // Number of elements in beam_views[]. size_t n_beams; // Number of elements in beam_views[].
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
bool last_call; // True iff this is the last callback invocation. bool last_call; // True iff this is the last callback invocation.
}; };
// Type of pointer to the beam_search_callback function. // Type of pointer to the beam_search_callback function.
@ -598,10 +709,18 @@ extern "C" {
/// @param n_past Number of tokens already evaluated. /// @param n_past Number of tokens already evaluated.
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
/// @param n_threads Number of threads as passed to llama_eval(). /// @param n_threads Number of threads as passed to llama_eval().
LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads); LLAMA_API void llama_beam_search(
struct llama_context * ctx,
llama_beam_search_callback_fn_t callback,
void * callback_data,
size_t n_beams,
int n_past,
int n_predict,
int n_threads);
// Performance information // Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx); LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx); LLAMA_API void llama_reset_timings(struct llama_context * ctx);