diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index a443dd27e..bdcad8349 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -4,7 +4,7 @@ from typing import Any, Callable, Sequence from numpy.typing import DTypeLike -from .constants import GGML_QUANT_SIZES, GGMLQuantizationType +from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K from .lazy import LazyNumpyTensor import numpy as np @@ -64,8 +64,10 @@ def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: - if qtype == GGMLQuantizationType.F32 or qtype == GGMLQuantizationType.F16: - return data.astype(np.float32, copy=False) + if qtype == GGMLQuantizationType.F32: + return data.view(np.float32) + elif qtype == GGMLQuantizationType.F16: + return data.view(np.float16).astype(np.float32) elif (q := _type_traits.get(qtype)) is not None: return q.dequantize(data) else: @@ -187,6 +189,166 @@ class BF16(__Quant, qtype=GGMLQuantizationType.BF16): return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32) +class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + imax = abs(blocks).argmax(axis=-1, keepdims=True) + max = np.take_along_axis(blocks, imax, axis=-1) + + d = max / -8 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + # FIXME: Q4_0's reference rounding is cursed and depends on FMA + qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15) + + qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([d, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, qs = np.hsplit(blocks, [2]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8) + + return (d * qs.astype(np.float32)) + + +class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + max = blocks.max(axis=-1, keepdims=True) + min = blocks.min(axis=-1, keepdims=True) + + d = (max - min) / 15 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15) + + qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) + qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) + + d = d.astype(np.float16).view(np.uint8) + m = min.astype(np.float16).view(np.uint8) + + return np.concatenate([d, m, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + m, qs = np.hsplit(rest, [2]) + + d = d.view(np.float16).astype(np.float32) + m = m.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32) + + return (d * qs) + m + + +class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + imax = abs(blocks).argmax(axis=-1, keepdims=True) + max = np.take_along_axis(blocks, imax, axis=-1) + + d = max / -16 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + # FIXME: Q5_0's reference rounding is cursed and depends on FMA + q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31) + + qs = q.reshape((n_blocks, 2, cls.block_size // 2)) + qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) + + qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) + + d = d.astype(np.float16).view(np.uint8) + + return np.concatenate([d, qh, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + qh, qs = np.hsplit(rest, [4]) + + d = d.view(np.float16).astype(np.float32) + qh = qh.view(np.uint32) + + qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) + ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = (qh & np.uint32(0x01)).astype(np.uint8) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) + + qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16) + + return (d * qs.astype(np.float32)) + + +class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1): + @classmethod + def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + max = blocks.max(axis=-1, keepdims=True) + min = blocks.min(axis=-1, keepdims=True) + + d = (max - min) / 31 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31) + + qs = q.reshape((n_blocks, 2, cls.block_size // 2)) + qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) + + qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) + + d = d.astype(np.float16).view(np.uint8) + m = min.astype(np.float16).view(np.uint8) + + return np.concatenate([d, m, qh, qs], axis=-1) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + m, rest = np.hsplit(rest, [2]) + qh, qs = np.hsplit(rest, [4]) + + d = d.view(np.float16).astype(np.float32) + m = m.view(np.float16).astype(np.float32) + qh = qh.view(np.uint32) + + qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) + ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = (qh & np.uint32(0x01)).astype(np.uint8) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) + + qs = (ql | (qh << np.uint8(4))).astype(np.float32) + + return (d * qs) + m + + class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): @classmethod # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c @@ -211,3 +373,227 @@ class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): x = x.view(np.int8).astype(np.float32) return (x * d) + + +class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + scales, rest = np.hsplit(blocks, [QK_K // 16]) + qs, rest = np.hsplit(rest, [QK_K // 4]) + d, dmin = np.hsplit(rest, [2]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + # (n_blocks, 16, 1) + dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) + ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) + + shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + + qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3) + + qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32) + + qs = dl * qs - ml + + return qs.reshape((n_blocks, -1)) + + +class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + hmask, rest = np.hsplit(blocks, [QK_K // 8]) + qs, rest = np.hsplit(rest, [QK_K // 4]) + scales, d = np.hsplit(rest, [12]) + + d = d.view(np.float16).astype(np.float32) + + # The scales are packed at 6-bit each in this pattern: + # 0: IIIIAAAA + # 1: JJJJBBBB + # 2: KKKKCCCC + # 3: LLLLDDDD + # 4: MMMMEEEE + # 5: NNNNFFFF + # 6: OOOOGGGG + # 7: PPPPHHHH + # 8: MMIIEEAA + # 9: NNJJFFBB + # 10: OOKKGGCC + # 11: PPLLHHDD + lscales, hscales = np.hsplit(scales, [8]) + lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1)) + lscales = lscales.reshape((n_blocks, 16)) + hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1)) + hscales = hscales.reshape((n_blocks, 16)) + scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4)) + scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32) + + dl = (d * scales).reshape((n_blocks, 16, 1)) + + ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) + ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3) + qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1)) + qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1 + q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32) + + return (dl * q).reshape((n_blocks, QK_K)) + + +class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K): + K_SCALE_SIZE = 12 + + @staticmethod + def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]: + n_blocks = scales.shape[0] + scales = scales.view(np.uint8) + ### Unpacking the following: ### + # 0 EEAAAAAA + # 1 FFBBBBBB + # 2 GGCCCCCC + # 3 HHDDDDDD + # 4 eeaaaaaa + # 5 ffbbbbbb + # 6 ggcccccc + # 7 hhdddddd + # 8 eeeeEEEE + # 9 ffffFFFF + # 10 ggggGGGG + # 11 hhhhHHHH + scales = scales.reshape((n_blocks, 3, 4)) + d, m, m_d = np.split(scales, 3, axis=-2) + + sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1) + min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1) + + return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + dmin, rest = np.hsplit(rest, [2]) + scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + sc, m = Q4_K.get_scale_min(scales) + + d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) + dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) + + qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32) + + return (d * qs - dm).reshape((n_blocks, QK_K)) + + +class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + dmin, rest = np.hsplit(rest, [2]) + scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE]) + qh, qs = np.hsplit(rest, [QK_K // 8]) + + d = d.view(np.float16).astype(np.float32) + dmin = dmin.view(np.float16).astype(np.float32) + + sc, m = Q4_K.get_scale_min(scales) + + d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) + dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) + + ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) + qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32)) + q = (ql | (qh << np.uint8(4))).astype(np.float32) + + return (d * q - dm).reshape((n_blocks, QK_K)) + + +class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K): + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + ql, rest = np.hsplit(blocks, [QK_K // 2]) + qh, rest = np.hsplit(rest, [QK_K // 4]) + scales, d = np.hsplit(rest, [QK_K // 16]) + + scales = scales.view(np.int8).astype(np.float32) + d = d.view(np.float16).astype(np.float32) + d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) + + ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) + qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) + qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32)) + q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32) + q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32) + + return (d * q).reshape((n_blocks, QK_K)) + + +class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL): + QK4_NL = 32 + + kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113) + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, qs = np.hsplit(blocks, [2]) + + d = d.view(np.float16).astype(np.float32) + + qs = qs.reshape((n_blocks, -1, 1, cls.QK4_NL // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + + qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1)) + + kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16) + qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1)) + + return (d * qs) + + +class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS): + + @classmethod + def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: + n_blocks = blocks.shape[0] + + d, rest = np.hsplit(blocks, [2]) + scales_h, rest = np.hsplit(rest, [2]) + scales_l, qs = np.hsplit(rest, [QK_K // 64]) + + d = d.view(np.float16).astype(np.float32) + scales_h = scales_h.view(np.uint16) + + scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) + scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1)) + scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F) + scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03) + + scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32) + dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1)) + + qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) + qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F) + + kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1)) + qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32)) + + return (dl * qs).reshape((n_blocks, -1)) diff --git a/gguf-py/tests/test_quants.py b/gguf-py/tests/test_quants.py new file mode 100755 index 000000000..9e7a9ae68 --- /dev/null +++ b/gguf-py/tests/test_quants.py @@ -0,0 +1,206 @@ +#!/usr/bin/env python3 + +# Test gguf.quants so that it exactly matches the C implementation of the (de)quantization + +# NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations. + +from __future__ import annotations + +import argparse +from math import prod +import os +import sys +from pathlib import Path +import ctypes +import logging +import numpy as np + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +import gguf +from gguf.constants import GGMLQuantizationType + + +logger = logging.getLogger("test-quants") + + +c_float_p = ctypes.POINTER(ctypes.c_float) + + +class ggml_init_params(ctypes.Structure): + _fields_ = [ + ("mem_size", ctypes.c_size_t), + ("mem_buffer", ctypes.c_void_p), + ("no_alloc", ctypes.c_bool), + ] + + +class GGMLQuants: + libggml: ctypes.CDLL + + def __init__(self, libggml: Path): + self.libggml = ctypes.CDLL(str(libggml)) + self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t + # enum ggml_type type, + # const float * src, + # void * dst, + # int64_t start, + # int64_t nrows, + # int64_t n_per_row, + # const float * imatrix) { + self.libggml.ggml_quantize_chunk.argtypes = ( + ctypes.c_int, + ctypes.POINTER(ctypes.c_float), + ctypes.c_void_p, + ctypes.c_int64, + ctypes.c_int64, + ctypes.c_int64, + ctypes.POINTER(ctypes.c_float), + ) + + for t in ( + "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", + "q2_K", "q3_K", "q4_K", "q5_K", "q6_K", + "iq4_nl", "iq4_xs", + ): + dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t) + dequant_func.restype = None + dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + + self.libggml.ggml_fp16_to_fp32_row.restype = None + self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + self.libggml.ggml_bf16_to_fp32_row.restype = None + self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) + + self.libggml.ggml_init.argtypes = (ggml_init_params,) + + self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False)) + + def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C") + if qtype == GGMLQuantizationType.F32: + # no-op + result = tensor.view(np.float32) + elif qtype == GGMLQuantizationType.F16: + self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) + elif qtype == GGMLQuantizationType.BF16: + self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) + else: + lw_qname = qtype.name.lower() + if lw_qname[-1] == "k": + lw_qname = lw_qname[:-1] + "K" + dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname) + dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size) + return result + + def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: + result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C") + result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], ctypes.cast(0, c_float_p)) + assert result.size == result_size + return result + + +def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool: + same = np.array_equal(t1, t2) + if same: + return True + else: + block_size, type_size = gguf.GGML_QUANT_SIZES[qtype] + if t1.dtype == np.float32: + t1 = t1.reshape((-1, block_size)) + t2 = t2.reshape((-1, block_size)) + else: + t1 = t1.reshape((-1, type_size)) + t2 = t2.reshape((-1, type_size)) + x = t1.view(np.uint8) ^ t2.view(np.uint8) + diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1) + logger.debug(f"{diff_bits.shape=}") + num_bad_blocks = np.count_nonzero(diff_bits, axis=0) + logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)") + bad_block_id = np.argmax(diff_bits, axis=0) + logger.debug(f"Worst block id: {bad_block_id}") + logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}") + + sum_diff_bits = np.sum(diff_bits) + logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits/(x.size * 8):.6f}%)") + return False + + +def do_test(libggml_path: Path): + ggml_quants = GGMLQuants(libggml_path) + + np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n}) + + r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False) + + for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()): + has_dequantize = False + has_quantize = False + + try: + gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype) + has_dequantize = True + except (NotImplementedError, AssertionError) as e: + if isinstance(e, AssertionError): + logger.error(f"Error with {qtype.name}: {e}") + raise e + try: + gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype) + has_quantize = True + except (NotImplementedError, AssertionError) as e: + if isinstance(e, AssertionError): + logger.error(f"Error with {qtype.name}: {e}") + raise e + + if not has_dequantize and not has_quantize: + continue + + logger.info(f"Testing {qtype.name}") + + rc = r.copy(order="C") + + pyq = None + + if has_quantize: + logger.debug(f"Quantizing to {qtype.name} with Python") + pyq = gguf.quants.quantize(rc, qtype) + + logger.debug(f"Quantizing to {qtype.name} with C") + ggq = ggml_quants.quantize(rc, qtype) + + if has_quantize: + assert pyq is not None + if qtype == GGMLQuantizationType.F16: + pyq = pyq.view(np.uint8) + quant_equal = compare_tensors(pyq, ggq, qtype) + + if not quant_equal: + logger.error(f"Quantization to {qtype.name} does not match ❌") + else: + logger.info(f"Quantization to {qtype.name} matches exactly ✅") + + if has_dequantize: + logger.debug(f"Dequantizing from {qtype.name} with Python") + pydq = gguf.quants.dequantize(ggq, qtype) + logger.debug(f"Dequantizing from {qtype.name} with C") + ggdq = ggml_quants.dequantize(ggq, qtype) + + dequant_equal = compare_tensors(pydq, ggdq, qtype) + + if not dequant_equal: + logger.error(f"Dequantization from {qtype.name} does not match ❌") + else: + logger.info(f"Dequantization from {qtype.name} matches exactly ✅") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation") + parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so") + + args = parser.parse_args() + + logging.basicConfig(level=logging.DEBUG) + + do_test(args.libggml)