mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)
* llama : remove LLAMA_MAX_DEVICES from llama.h ggml-ci * Update llama.cpp Co-authored-by: slaren <slarengh@gmail.com> * server : remove LLAMA_MAX_DEVICES ggml-ci * llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD ggml-ci * train : remove LLAMA_SUPPORTS_GPU_OFFLOAD * readme : add deprecation notice * readme : change deprecation notice to "remove" and fix url * llama : remove gpu includes from llama.h ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
efb7bdbbd0
commit
5cb04dbc16
@ -10,7 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
|
||||
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
|
@ -583,20 +583,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--main-gpu" || arg == "-mg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -637,11 +637,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
|
||||
if (split_arg.size() >= llama_max_devices()) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
@ -989,30 +989,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
|
||||
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
|
||||
if (llama_mlock_supported()) {
|
||||
if (llama_supports_mlock()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
if (llama_supports_mmap()) {
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
|
||||
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
}
|
||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
@ -1651,7 +1651,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
|
||||
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
|
@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET;
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
uint32_t seed = -1; // RNG seed
|
||||
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
|
||||
// pinging @cebtenzzre
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
|
||||
// pinging @cebtenzzre
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
|
||||
*invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
params->print_usage = true;
|
||||
return true;
|
||||
|
@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
const std::vector<float> t_split(llama_max_devices(), 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
|
@ -160,7 +160,7 @@ struct cmd_params {
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
@ -179,7 +179,7 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {{}},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN
|
||||
@ -380,10 +380,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
const std::regex regex{R"([;/]+)"};
|
||||
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
std::vector<float> tensor_split(llama_max_devices());
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
@ -459,7 +459,7 @@ struct cmd_params_instance {
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
|
||||
llama_model_params to_llama_mparams() const {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
@ -582,7 +582,7 @@ struct test {
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
std::string test_time;
|
||||
@ -704,7 +704,7 @@ struct test {
|
||||
std::vector<std::string> get_values() const {
|
||||
std::string tensor_split_str;
|
||||
int max_nonzero = 0;
|
||||
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
|
||||
for (size_t i = 0; i < llama_max_devices(); i++) {
|
||||
if (tensor_split[i] > 0) {
|
||||
max_nonzero = i;
|
||||
}
|
||||
|
@ -1789,28 +1789,28 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
if (llama_supports_mlock())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported())
|
||||
if (llama_supports_mmap())
|
||||
{
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
}
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
@ -2066,13 +2066,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
"See main README.md for information on enabling GPU BLAS support",
|
||||
{{"n_gpu_layers", params.n_gpu_layers}});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else if (arg == "--split-mode" || arg == "-sm")
|
||||
{
|
||||
@ -2115,9 +2115,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
||||
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
|
||||
{
|
||||
if (i_device < split_arg.size())
|
||||
{
|
||||
|
39
llama.cpp
39
llama.cpp
@ -10090,18 +10090,45 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
return result;
|
||||
}
|
||||
|
||||
int32_t llama_max_devices(void) {
|
||||
return LLAMA_MAX_DEVICES;
|
||||
size_t llama_max_devices(void) {
|
||||
#if defined(GGML_USE_METAL)
|
||||
return 1;
|
||||
#elif defined(GGML_USE_CUBLAS)
|
||||
return GGML_CUDA_MAX_DEVICES;
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
return GGML_SYCL_MAX_DEVICES;
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool llama_mmap_supported(void) {
|
||||
bool llama_supports_mmap(void) {
|
||||
return llama_mmap::SUPPORTED;
|
||||
}
|
||||
|
||||
bool llama_mlock_supported(void) {
|
||||
bool llama_supports_mlock(void) {
|
||||
return llama_mlock::SUPPORTED;
|
||||
}
|
||||
|
||||
bool llama_supports_gpu_offload(void) {
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
// deprecated:
|
||||
bool llama_mmap_supported(void) {
|
||||
return llama_supports_mmap();
|
||||
}
|
||||
|
||||
bool llama_mlock_supported(void) {
|
||||
return llama_supports_mlock();
|
||||
}
|
||||
|
||||
void llama_backend_init(bool numa) {
|
||||
ggml_time_init();
|
||||
|
||||
@ -10133,8 +10160,8 @@ int64_t llama_time_us(void) {
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_model_params params) {
|
||||
const char * path_model,
|
||||
struct llama_model_params params) {
|
||||
ggml_time_init();
|
||||
|
||||
llama_model * model = new llama_model;
|
||||
|
29
llama.h
29
llama.h
@ -3,15 +3,7 @@
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
#include "ggml-sycl.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
|
||||
#else
|
||||
#define LLAMA_MAX_DEVICES 1
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
@ -49,12 +41,6 @@
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 4
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -201,7 +187,7 @@ extern "C" {
|
||||
// LLAMA_SPLIT_LAYER: ignored
|
||||
int32_t main_gpu;
|
||||
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||||
const float * tensor_split;
|
||||
|
||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
@ -338,9 +324,14 @@ extern "C" {
|
||||
|
||||
LLAMA_API int64_t llama_time_us(void);
|
||||
|
||||
LLAMA_API int32_t llama_max_devices(void);
|
||||
LLAMA_API bool llama_mmap_supported (void);
|
||||
LLAMA_API bool llama_mlock_supported(void);
|
||||
LLAMA_API size_t llama_max_devices(void);
|
||||
|
||||
LLAMA_API bool llama_supports_mmap (void);
|
||||
LLAMA_API bool llama_supports_mlock (void);
|
||||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||||
|
||||
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||||
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user