llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)

* llama : remove LLAMA_MAX_DEVICES from llama.h

ggml-ci

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* server : remove LLAMA_MAX_DEVICES

ggml-ci

* llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD

ggml-ci

* train : remove LLAMA_SUPPORTS_GPU_OFFLOAD

* readme : add deprecation notice

* readme : change deprecation notice to "remove" and fix url

* llama : remove gpu includes from llama.h

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Georgi Gerganov 2024-01-31 17:30:17 +02:00 committed by GitHub
parent efb7bdbbd0
commit 5cb04dbc16
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 143 additions and 124 deletions

View File

@ -10,7 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138 - Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series) - [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow - New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
- Collecting Apple Silicon performance stats: - Collecting Apple Silicon performance stats:

View File

@ -583,20 +583,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.n_gpu_layers = std::stoi(argv[i]); params.n_gpu_layers = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif }
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.n_gpu_layers_draft = std::stoi(argv[i]); params.n_gpu_layers_draft = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif }
} else if (arg == "--main-gpu" || arg == "-mg") { } else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -637,11 +637,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
const std::regex regex{R"([,/]+)"}; const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}}; std::vector<std::string> split_arg{it, {}};
if (split_arg.size() >= LLAMA_MAX_DEVICES) { if (split_arg.size() >= llama_max_devices()) {
invalid_param = true; invalid_param = true;
break; break;
} }
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) { if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]); params.tensor_split[i] = std::stof(split_arg[i]);
} else { } else {
@ -989,30 +989,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n"); printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_mlock_supported()) { if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
} }
if (llama_mmap_supported()) { if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
} }
printf(" --numa attempt optimizations that help on some NUMA systems\n"); printf(" --numa attempt optimizations that help on some NUMA systems\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n"); printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n"); printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n"); printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n"); printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n"); printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n"); printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n"); printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n"); printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu); printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD }
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false"); printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false"); printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n"); printf(" -gan N, --grp-attn-n N\n");
@ -1651,7 +1651,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z); fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);

View File

@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET;
int32_t get_num_physical_cores(); int32_t get_num_physical_cores();
struct gpt_params { struct gpt_params {
uint32_t seed = -1; // RNG seed uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores(); int32_t n_threads = get_num_physical_cores();
int32_t n_threads_draft = -1; int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1; int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width. int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled) int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
// pinging @cebtenzzre // pinging @cebtenzzre
// // sampling parameters // // sampling parameters
struct llama_sampling_params sparams; struct llama_sampling_params sparams;

View File

@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
*invalid_param = true; *invalid_param = true;
return true; return true;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD if (llama_supports_gpu_offload()) {
params->n_gpu_layers = std::stoi(argv[i]); params->n_gpu_layers = std::stoi(argv[i]);
#else } else {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif }
} else if (arg == "-h" || arg == "--help") { } else if (arg == "-h" || arg == "--help") {
params->print_usage = true; params->print_usage = true;
return true; return true;

View File

@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f); const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers; model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data(); model_params.tensor_split = t_split.data();

View File

@ -160,7 +160,7 @@ struct cmd_params {
std::vector<int> main_gpu; std::vector<int> main_gpu;
std::vector<bool> no_kv_offload; std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q; std::vector<bool> mul_mat_q;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split; std::vector<std::vector<float>> tensor_split;
int reps; int reps;
bool verbose; bool verbose;
output_formats output_format; output_formats output_format;
@ -179,7 +179,7 @@ static const cmd_params cmd_params_defaults = {
/* main_gpu */ {0}, /* main_gpu */ {0},
/* no_kv_offload */ {false}, /* no_kv_offload */ {false},
/* mul_mat_q */ {true}, /* mul_mat_q */ {true},
/* tensor_split */ {{}}, /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* reps */ 5, /* reps */ 5,
/* verbose */ false, /* verbose */ false,
/* output_format */ MARKDOWN /* output_format */ MARKDOWN
@ -380,10 +380,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
const std::regex regex{R"([;/]+)"}; const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}}; std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); GGML_ASSERT(split_arg.size() <= llama_max_devices());
std::array<float, LLAMA_MAX_DEVICES> tensor_split; std::vector<float> tensor_split(llama_max_devices());
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) { if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]); tensor_split[i] = std::stof(split_arg[i]);
} else { } else {
@ -459,7 +459,7 @@ struct cmd_params_instance {
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split; std::vector<float> tensor_split;
llama_model_params to_llama_mparams() const { llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params(); llama_model_params mparams = llama_model_default_params();
@ -582,7 +582,7 @@ struct test {
int main_gpu; int main_gpu;
bool no_kv_offload; bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split; std::vector<float> tensor_split;
int n_prompt; int n_prompt;
int n_gen; int n_gen;
std::string test_time; std::string test_time;
@ -704,7 +704,7 @@ struct test {
std::vector<std::string> get_values() const { std::vector<std::string> get_values() const {
std::string tensor_split_str; std::string tensor_split_str;
int max_nonzero = 0; int max_nonzero = 0;
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) { for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) { if (tensor_split[i] > 0) {
max_nonzero = i; max_nonzero = i;
} }

View File

@ -1789,28 +1789,28 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported()) if (llama_supports_mlock())
{ {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
} }
if (llama_mmap_supported()) if (llama_supports_mmap())
{ {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
} }
printf(" --numa attempt optimizations that help on some NUMA systems\n"); printf(" --numa attempt optimizations that help on some NUMA systems\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n"); printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n"); printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n"); printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n"); printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n"); printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n"); printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n"); printf(" or for intermediate results and KV (with split-mode = row)\n");
#endif }
printf(" -m FNAME, --model FNAME\n"); printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str()); printf(" model path (default: %s)\n", params.model.c_str());
printf(" -a ALIAS, --alias ALIAS\n"); printf(" -a ALIAS, --alias ALIAS\n");
@ -2066,13 +2066,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD if (llama_supports_gpu_offload()) {
params.n_gpu_layers = std::stoi(argv[i]); params.n_gpu_layers = std::stoi(argv[i]);
#else } else {
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support", "See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}}); {{"n_gpu_layers", params.n_gpu_layers}});
#endif }
} }
else if (arg == "--split-mode" || arg == "-sm") else if (arg == "--split-mode" || arg == "-sm")
{ {
@ -2115,9 +2115,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
const std::regex regex{R"([,/]+)"}; const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}}; std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
{ {
if (i_device < split_arg.size()) if (i_device < split_arg.size())
{ {

View File

@ -10090,18 +10090,45 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
return result; return result;
} }
int32_t llama_max_devices(void) { size_t llama_max_devices(void) {
return LLAMA_MAX_DEVICES; #if defined(GGML_USE_METAL)
return 1;
#elif defined(GGML_USE_CUBLAS)
return GGML_CUDA_MAX_DEVICES;
#elif defined(GGML_USE_SYCL)
return GGML_SYCL_MAX_DEVICES;
#else
return 1;
#endif
} }
bool llama_mmap_supported(void) { bool llama_supports_mmap(void) {
return llama_mmap::SUPPORTED; return llama_mmap::SUPPORTED;
} }
bool llama_mlock_supported(void) { bool llama_supports_mlock(void) {
return llama_mlock::SUPPORTED; return llama_mlock::SUPPORTED;
} }
bool llama_supports_gpu_offload(void) {
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
#else
return false;
#endif
}
// deprecated:
bool llama_mmap_supported(void) {
return llama_supports_mmap();
}
bool llama_mlock_supported(void) {
return llama_supports_mlock();
}
void llama_backend_init(bool numa) { void llama_backend_init(bool numa) {
ggml_time_init(); ggml_time_init();
@ -10133,8 +10160,8 @@ int64_t llama_time_us(void) {
} }
struct llama_model * llama_load_model_from_file( struct llama_model * llama_load_model_from_file(
const char * path_model, const char * path_model,
struct llama_model_params params) { struct llama_model_params params) {
ggml_time_init(); ggml_time_init();
llama_model * model = new llama_model; llama_model * model = new llama_model;

29
llama.h
View File

@ -3,15 +3,7 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#elif defined(GGML_USE_SYCL)
#include "ggml-sycl.h"
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
@ -49,12 +41,6 @@
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4 #define LLAMA_SESSION_VERSION 4
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -201,7 +187,7 @@ extern "C" {
// LLAMA_SPLIT_LAYER: ignored // LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu; int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split; const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
@ -338,9 +324,14 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void); LLAMA_API int64_t llama_time_us(void);
LLAMA_API int32_t llama_max_devices(void); LLAMA_API size_t llama_max_devices(void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void); LLAMA_API bool llama_supports_mmap (void);
LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);