mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 23:34:35 +00:00
Merge branch 'master' into compilade/refactor-kv-cache
This commit is contained in:
commit
5d3c7b9585
@ -31,6 +31,6 @@ ENV LLAMA_CUDA=1
|
|||||||
# Enable cURL
|
# Enable cURL
|
||||||
ENV LLAMA_CURL=1
|
ENV LLAMA_CURL=1
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||||
|
@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
|
|||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y libcurl4-openssl-dev
|
apt-get install -y libcurl4-openssl-dev
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||||
|
@ -18,7 +18,7 @@ COPY . .
|
|||||||
ENV LLAMA_CURL=1
|
ENV LLAMA_CURL=1
|
||||||
|
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
ENV LC_ALL=C.utf8
|
ENV LC_ALL=C.utf8
|
||||||
|
|
||||||
|
@ -23,7 +23,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
|||||||
# Enable CUDA
|
# Enable CUDA
|
||||||
ENV LLAMA_CUDA=1
|
ENV LLAMA_CUDA=1
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||||
|
|
||||||
|
@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
|||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||||
|
|
||||||
|
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||||
|
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||||
|
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||||
|
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||||
|
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||||
|
|
||||||
ARG LLAMA_SYCL_F16=OFF
|
ARG LLAMA_SYCL_F16=OFF
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y git
|
apt-get install -y git
|
||||||
|
@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1
|
|||||||
ENV CC=/opt/rocm/llvm/bin/clang
|
ENV CC=/opt/rocm/llvm/bin/clang
|
||||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/main" ]
|
ENTRYPOINT [ "/app/main" ]
|
||||||
|
@ -9,7 +9,7 @@ WORKDIR /app
|
|||||||
|
|
||||||
COPY . .
|
COPY . .
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||||
|
|
||||||
|
@ -25,7 +25,7 @@ ENV LLAMA_CUDA=1
|
|||||||
# Enable cURL
|
# Enable cURL
|
||||||
ENV LLAMA_CURL=1
|
ENV LLAMA_CURL=1
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||||
|
|
||||||
|
@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
|||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||||
|
|
||||||
|
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||||
|
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||||
|
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||||
|
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||||
|
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||||
|
|
||||||
ARG LLAMA_SYCL_F16=OFF
|
ARG LLAMA_SYCL_F16=OFF
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y git libcurl4-openssl-dev
|
apt-get install -y git libcurl4-openssl-dev
|
||||||
@ -19,6 +27,14 @@ RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
|
|||||||
|
|
||||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||||
|
|
||||||
|
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
|
||||||
|
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
|
||||||
|
rm /etc/apt/sources.list.d/intel-graphics.list && \
|
||||||
|
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
|
||||||
|
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
|
||||||
|
chmod 644 /usr/share/keyrings/intel-graphics.gpg
|
||||||
|
|
||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y libcurl4-openssl-dev
|
apt-get install -y libcurl4-openssl-dev
|
||||||
|
|
||||||
|
@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
|
|||||||
RUN apt-get update && \
|
RUN apt-get update && \
|
||||||
apt-get install -y libcurl4-openssl-dev
|
apt-get install -y libcurl4-openssl-dev
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
ENTRYPOINT [ "/app/server" ]
|
ENTRYPOINT [ "/app/server" ]
|
||||||
|
@ -11,7 +11,7 @@ COPY . .
|
|||||||
|
|
||||||
ENV LLAMA_CURL=1
|
ENV LLAMA_CURL=1
|
||||||
|
|
||||||
RUN make
|
RUN make -j$(nproc)
|
||||||
|
|
||||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||||
|
|
||||||
|
@ -8,7 +8,7 @@ arg1="$1"
|
|||||||
shift
|
shift
|
||||||
|
|
||||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||||
python3 ./convert.py "$@"
|
python3 ./convert-hf-to-gguf.py "$@"
|
||||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||||
./quantize "$@"
|
./quantize "$@"
|
||||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||||
|
38
.github/ISSUE_TEMPLATE/06-question.yml
vendored
38
.github/ISSUE_TEMPLATE/06-question.yml
vendored
@ -1,38 +0,0 @@
|
|||||||
name: Question
|
|
||||||
description: Used to ask questions about llama.cpp
|
|
||||||
title: "Question: "
|
|
||||||
labels: ["question"]
|
|
||||||
body:
|
|
||||||
- type: markdown
|
|
||||||
attributes:
|
|
||||||
value: |
|
|
||||||
[Please search your question first in Discussion if you got a common general question.](https://github.com/ggerganov/llama.cpp/discussions/categories/q-a)
|
|
||||||
|
|
||||||
- type: checkboxes
|
|
||||||
id: prerequisites
|
|
||||||
attributes:
|
|
||||||
label: Prerequisites
|
|
||||||
description: Please confirm the following before submitting your question.
|
|
||||||
options:
|
|
||||||
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
|
|
||||||
required: true
|
|
||||||
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new useful question to share that cannot be answered within Discussions.
|
|
||||||
required: true
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
id: background-description
|
|
||||||
attributes:
|
|
||||||
label: Background Description
|
|
||||||
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an question.
|
|
||||||
placeholder: Detailed description of your question
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
id: possible-answer
|
|
||||||
attributes:
|
|
||||||
label: Possible Answer
|
|
||||||
description: If you have some idea of possible answers you want to confirm, that would also be appreciated.
|
|
||||||
placeholder: Your idea of possible answers
|
|
||||||
validations:
|
|
||||||
required: false
|
|
52
.github/ISSUE_TEMPLATE/06-research.yml
vendored
Normal file
52
.github/ISSUE_TEMPLATE/06-research.yml
vendored
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
name: Research
|
||||||
|
description: Track new technical research area
|
||||||
|
title: "Research: "
|
||||||
|
labels: ["research 🔬"]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||||
|
|
||||||
|
- type: checkboxes
|
||||||
|
id: research-stage
|
||||||
|
attributes:
|
||||||
|
label: Research Stage
|
||||||
|
description: Track general state of this research ticket
|
||||||
|
options:
|
||||||
|
- label: Background Research (Let's try to avoid reinventing the wheel)
|
||||||
|
- label: Hypothesis Formed (How do you think this will work and it's effect?)
|
||||||
|
- label: Strategy / Implementation Forming
|
||||||
|
- label: Analysis of results
|
||||||
|
- label: Debrief / Documentation (So people in the future can learn from us)
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: background
|
||||||
|
attributes:
|
||||||
|
label: Previous existing literature and research
|
||||||
|
description: Whats the current state of the art and whats the motivation for this research?
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: hypothesis
|
||||||
|
attributes:
|
||||||
|
label: Hypothesis
|
||||||
|
description: How do you think this will work and it's effect?
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: implementation
|
||||||
|
attributes:
|
||||||
|
label: Implementation
|
||||||
|
description: Got an approach? e.g. a PR ready to go?
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: analysis
|
||||||
|
attributes:
|
||||||
|
label: Analysis
|
||||||
|
description: How does the proposed implementation behave?
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: logs
|
||||||
|
attributes:
|
||||||
|
label: Relevant log output
|
||||||
|
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||||
|
render: shell
|
13
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
13
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Got an idea?
|
||||||
|
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
|
||||||
|
about: Pop it there. It may then become an enhancement ticket.
|
||||||
|
- name: Got a question?
|
||||||
|
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
|
||||||
|
about: Ask a question there!
|
||||||
|
- name: Want to contribute?
|
||||||
|
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||||
|
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||||
|
|
||||||
|
|
5
.github/workflows/docker.yml
vendored
5
.github/workflows/docker.yml
vendored
@ -42,9 +42,8 @@ jobs:
|
|||||||
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
|
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repo
|
- name: Check out the repo
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
|
@ -106,6 +106,7 @@ set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
|||||||
"llama: max. batch size for using peer access")
|
"llama: max. batch size for using peer access")
|
||||||
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
|
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
|
||||||
option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF)
|
option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF)
|
||||||
|
option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for FlashAttention" OFF)
|
||||||
|
|
||||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||||
@ -402,6 +403,8 @@ if (LLAMA_CUDA)
|
|||||||
|
|
||||||
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
||||||
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_CUDA)
|
add_compile_definitions(GGML_USE_CUDA)
|
||||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||||
@ -427,6 +430,18 @@ if (LLAMA_CUDA)
|
|||||||
if (LLAMA_CUDA_NO_PEER_COPY)
|
if (LLAMA_CUDA_NO_PEER_COPY)
|
||||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||||
endif()
|
endif()
|
||||||
|
if (LLAMA_CUDA_FA_ALL_QUANTS)
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||||
|
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||||
|
else()
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||||
|
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_STATIC)
|
if (LLAMA_STATIC)
|
||||||
if (WIN32)
|
if (WIN32)
|
||||||
@ -571,6 +586,8 @@ if (LLAMA_HIPBLAS)
|
|||||||
|
|
||||||
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
|
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
|
||||||
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
|
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
|
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
|
||||||
|
|
||||||
@ -590,6 +607,19 @@ if (LLAMA_HIPBLAS)
|
|||||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (LLAMA_CUDA_FA_ALL_QUANTS)
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||||
|
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||||
|
else()
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||||
|
file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
|
||||||
|
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||||
|
endif()
|
||||||
|
|
||||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||||
@ -628,6 +658,10 @@ if (LLAMA_SYCL)
|
|||||||
add_compile_definitions(GGML_SYCL_F16)
|
add_compile_definitions(GGML_SYCL_F16)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (LLAMA_CUDA_FORCE_MMQ)
|
||||||
|
add_compile_definitions(GGML_SYCL_FORCE_MMQ)
|
||||||
|
endif()
|
||||||
|
|
||||||
add_compile_options(-I./) #include DPCT
|
add_compile_options(-I./) #include DPCT
|
||||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||||
|
|
||||||
@ -1310,7 +1344,7 @@ set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}
|
|||||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||||
|
|
||||||
install(
|
install(
|
||||||
FILES convert.py
|
FILES convert-hf-to-gguf.py
|
||||||
PERMISSIONS
|
PERMISSIONS
|
||||||
OWNER_READ
|
OWNER_READ
|
||||||
OWNER_WRITE
|
OWNER_WRITE
|
||||||
|
22
Makefile
22
Makefile
@ -421,6 +421,15 @@ ifdef LLAMA_CUBLAS
|
|||||||
LLAMA_CUDA := 1
|
LLAMA_CUDA := 1
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
OBJS_CUDA_TEMP_INST = $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-wmma*.cu))
|
||||||
|
ifdef LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*.cu))
|
||||||
|
else
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu))
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu))
|
||||||
|
OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*f16-f16.cu))
|
||||||
|
endif # LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
ifdef LLAMA_CUDA
|
ifdef LLAMA_CUDA
|
||||||
ifneq ('', '$(wildcard /opt/cuda)')
|
ifneq ('', '$(wildcard /opt/cuda)')
|
||||||
CUDA_PATH ?= /opt/cuda
|
CUDA_PATH ?= /opt/cuda
|
||||||
@ -431,6 +440,7 @@ ifdef LLAMA_CUDA
|
|||||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||||
MK_NVCCFLAGS += -use_fast_math
|
MK_NVCCFLAGS += -use_fast_math
|
||||||
ifdef LLAMA_FATAL_WARNINGS
|
ifdef LLAMA_FATAL_WARNINGS
|
||||||
MK_NVCCFLAGS += -Werror all-warnings
|
MK_NVCCFLAGS += -Werror all-warnings
|
||||||
@ -493,7 +503,10 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
|
|||||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||||
ifdef LLAMA_CUDA_CCBIN
|
ifdef LLAMA_CUDA_CCBIN
|
||||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||||
endif
|
endif # LLAMA_CUDA_CCBIN
|
||||||
|
ifdef LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||||
|
endif # LLAMA_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
ifdef JETSON_EOL_MODULE_DETECT
|
ifdef JETSON_EOL_MODULE_DETECT
|
||||||
define NVCC_COMPILE
|
define NVCC_COMPILE
|
||||||
@ -505,7 +518,7 @@ define NVCC_COMPILE
|
|||||||
endef # NVCC_COMPILE
|
endef # NVCC_COMPILE
|
||||||
endif # JETSON_EOL_MODULE_DETECT
|
endif # JETSON_EOL_MODULE_DETECT
|
||||||
|
|
||||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
$(NVCC_COMPILE)
|
$(NVCC_COMPILE)
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
@ -571,6 +584,7 @@ ifdef LLAMA_HIP_UMA
|
|||||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||||
endif # LLAMA_HIP_UMA
|
endif # LLAMA_HIP_UMA
|
||||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||||
|
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
|
||||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||||
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
||||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||||
@ -584,11 +598,12 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
|
|||||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||||
OBJS += ggml-cuda.o
|
OBJS += ggml-cuda.o
|
||||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||||
|
OBJS += $(OBJS_CUDA_TEMP_INST)
|
||||||
|
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
|
||||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
|
||||||
endif # LLAMA_HIPBLAS
|
endif # LLAMA_HIPBLAS
|
||||||
@ -748,6 +763,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
|||||||
clean:
|
clean:
|
||||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||||
rm -vrf ggml-cuda/*.o
|
rm -vrf ggml-cuda/*.o
|
||||||
|
rm -vrf ggml-cuda/template-instances/*.o
|
||||||
find examples pocs -type f -name "*.o" -delete
|
find examples pocs -type f -name "*.o" -delete
|
||||||
|
|
||||||
#
|
#
|
||||||
|
@ -54,10 +54,10 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|
|||||||
|
|
||||||
## OS
|
## OS
|
||||||
|
|
||||||
| OS | Status | Verified |
|
| OS | Status | Verified |
|
||||||
|---------|---------|------------------------------------|
|
|---------|---------|------------------------------------------------|
|
||||||
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
|
||||||
| Windows | Support | Windows 11 |
|
| Windows | Support | Windows 11 |
|
||||||
|
|
||||||
|
|
||||||
## Hardware
|
## Hardware
|
||||||
@ -70,7 +70,7 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|
|||||||
|-------------------------------|---------|---------------------------------------|
|
|-------------------------------|---------|---------------------------------------|
|
||||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||||
| Intel Arc Series | Support | Arc 770, 730M |
|
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||||
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
|
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
|
||||||
|
|
||||||
|
52
README.md
52
README.md
@ -2,7 +2,9 @@
|
|||||||
|
|
||||||
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
|
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
|
||||||
|
|
||||||
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
|
||||||
|
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||||
|
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
|
||||||
|
|
||||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||||
|
|
||||||
@ -20,7 +22,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
|||||||
|
|
||||||
### Hot topics
|
### Hot topics
|
||||||
|
|
||||||
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
|
- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
||||||
|
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
||||||
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
|
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||||
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
|
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
|
||||||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||||||
@ -200,6 +203,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
|||||||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||||
|
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||||||
|
|
||||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||||
|
|
||||||
@ -315,8 +319,6 @@ In order to build llama.cpp you have four different options.
|
|||||||
make
|
make
|
||||||
```
|
```
|
||||||
|
|
||||||
**Note**: for `Debug` builds, run `make LLAMA_DEBUG=1`
|
|
||||||
|
|
||||||
- On Windows:
|
- On Windows:
|
||||||
|
|
||||||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||||
@ -328,23 +330,32 @@ In order to build llama.cpp you have four different options.
|
|||||||
make
|
make
|
||||||
```
|
```
|
||||||
|
|
||||||
|
- Notes:
|
||||||
|
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
|
||||||
|
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||||
|
- For debug builds, run `make LLAMA_DEBUG=1`
|
||||||
|
|
||||||
- Using `CMake`:
|
- Using `CMake`:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build
|
cmake -B build
|
||||||
cmake --build build --config Release
|
cmake --build build --config Release
|
||||||
```
|
```
|
||||||
|
|
||||||
**Note**: for `Debug` builds, there are two cases:
|
**Notes**:
|
||||||
|
|
||||||
- Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
|
||||||
|
- For faster repeated compilation, install [ccache](https://ccache.dev/).
|
||||||
|
- For debug builds, there are two cases:
|
||||||
|
|
||||||
|
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
cmake -B build -DCMAKE_BUILD_TYPE=Debug
|
||||||
cmake --build build
|
cmake --build build
|
||||||
```
|
```
|
||||||
|
|
||||||
- Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cmake -B build -G "Xcode"
|
cmake -B build -G "Xcode"
|
||||||
@ -379,6 +390,14 @@ In order to build llama.cpp you have four different options.
|
|||||||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||||||
the instructions for use and activate this options in this document below.
|
the instructions for use and activate this options in this document below.
|
||||||
|
|
||||||
|
### Homebrew
|
||||||
|
|
||||||
|
On Mac and Linux, the homebrew package manager can be used via
|
||||||
|
```
|
||||||
|
brew install llama.cpp
|
||||||
|
```
|
||||||
|
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||||
|
|
||||||
### Metal Build
|
### Metal Build
|
||||||
|
|
||||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||||
@ -477,10 +496,12 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||||
|
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | |
|
||||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||||
|
| LLAMA_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||||
|
|
||||||
- #### hipBLAS
|
- #### hipBLAS
|
||||||
|
|
||||||
@ -696,7 +717,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|
|
||||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||||
|
|
||||||
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives.
|
||||||
|
It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# obtain the official LLaMA model weights and place them in ./models
|
# obtain the official LLaMA model weights and place them in ./models
|
||||||
@ -713,10 +735,10 @@ ls ./models
|
|||||||
python3 -m pip install -r requirements.txt
|
python3 -m pip install -r requirements.txt
|
||||||
|
|
||||||
# convert the model to ggml FP16 format
|
# convert the model to ggml FP16 format
|
||||||
python3 convert.py models/mymodel/
|
python3 convert-hf-to-gguf.py models/mymodel/
|
||||||
|
|
||||||
# [Optional] for models using BPE tokenizers
|
# [Optional] for models using BPE tokenizers
|
||||||
python convert.py models/mymodel/ --vocab-type bpe
|
python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
|
||||||
|
|
||||||
# quantize the model to 4-bits (using Q4_K_M method)
|
# quantize the model to 4-bits (using Q4_K_M method)
|
||||||
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||||
|
@ -287,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
|
|||||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||||
|
|
||||||
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||||
|
|
||||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||||
|
@ -25,8 +25,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
from convert import LlamaHfVocab
|
|
||||||
|
|
||||||
logger = logging.getLogger("hf-to-gguf")
|
logger = logging.getLogger("hf-to-gguf")
|
||||||
|
|
||||||
|
|
||||||
@ -634,7 +632,7 @@ class Model:
|
|||||||
special_vocab.add_to_gguf(self.gguf_writer)
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
def _set_vocab_llama_hf(self):
|
def _set_vocab_llama_hf(self):
|
||||||
vocab = LlamaHfVocab(self.dir_model)
|
vocab = gguf.LlamaHfVocab(self.dir_model)
|
||||||
tokens = []
|
tokens = []
|
||||||
scores = []
|
scores = []
|
||||||
toktypes = []
|
toktypes = []
|
||||||
@ -2971,7 +2969,12 @@ def main() -> None:
|
|||||||
hparams = Model.load_hparams(dir_model)
|
hparams = Model.load_hparams(dir_model)
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
try:
|
||||||
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
|
except NotImplementedError:
|
||||||
|
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
|
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
|
||||||
|
|
||||||
logger.info("Set model parameters")
|
logger.info("Set model parameters")
|
||||||
|
@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M
|
|||||||
### 1. Convert the model to GGUF
|
### 1. Convert the model to GGUF
|
||||||
|
|
||||||
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
||||||
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
|
Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format).
|
||||||
|
|
||||||
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
||||||
|
|
||||||
|
@ -24,14 +24,16 @@ from abc import ABC, abstractmethod
|
|||||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
|
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sentencepiece import SentencePieceProcessor
|
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
# use .parent.parent since we are in "examples" directory
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
|
||||||
|
|
||||||
import gguf
|
import gguf
|
||||||
|
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from typing_extensions import Self, TypeAlias
|
from typing_extensions import Self, TypeAlias
|
||||||
@ -380,306 +382,6 @@ class Metadata:
|
|||||||
return metadata
|
return metadata
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
# vocab
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
@runtime_checkable
|
|
||||||
class BaseVocab(Protocol):
|
|
||||||
tokenizer_model: ClassVar[str]
|
|
||||||
name: ClassVar[str]
|
|
||||||
|
|
||||||
|
|
||||||
class NoVocab(BaseVocab):
|
|
||||||
tokenizer_model = "no_vocab"
|
|
||||||
name = "no_vocab"
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return "<NoVocab for a model without integrated vocabulary>"
|
|
||||||
|
|
||||||
|
|
||||||
@runtime_checkable
|
|
||||||
class Vocab(BaseVocab, Protocol):
|
|
||||||
vocab_size: int
|
|
||||||
added_tokens_dict: dict[str, int]
|
|
||||||
added_tokens_list: list[str]
|
|
||||||
fname_tokenizer: Path
|
|
||||||
|
|
||||||
def __init__(self, base_path: Path): ...
|
|
||||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
|
|
||||||
|
|
||||||
|
|
||||||
class BpeVocab(Vocab):
|
|
||||||
tokenizer_model = "gpt2"
|
|
||||||
name = "bpe"
|
|
||||||
|
|
||||||
def __init__(self, base_path: Path):
|
|
||||||
added_tokens: dict[str, int] = {}
|
|
||||||
|
|
||||||
if (fname_tokenizer := base_path / 'vocab.json').exists():
|
|
||||||
# "slow" tokenizer
|
|
||||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
|
||||||
self.vocab = json.load(f)
|
|
||||||
|
|
||||||
try:
|
|
||||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
|
||||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
|
||||||
added_tokens = json.load(f)
|
|
||||||
except FileNotFoundError:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
# "fast" tokenizer
|
|
||||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
|
||||||
|
|
||||||
# if this fails, FileNotFoundError propagates to caller
|
|
||||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
|
||||||
if (
|
|
||||||
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
|
|
||||||
or tokenizer_json['decoder']['type'] != 'ByteLevel'
|
|
||||||
):
|
|
||||||
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
|
|
||||||
|
|
||||||
self.vocab = tokenizer_model["vocab"]
|
|
||||||
|
|
||||||
if (added := tokenizer_json.get('added_tokens')) is not None:
|
|
||||||
# Added tokens here can be duplicates of the main vocabulary.
|
|
||||||
added_tokens = {item['content']: item['id']
|
|
||||||
for item in added
|
|
||||||
if item['content'] not in self.vocab}
|
|
||||||
|
|
||||||
vocab_size = len(self.vocab)
|
|
||||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
|
||||||
actual_ids = sorted(added_tokens.values())
|
|
||||||
if expected_ids != actual_ids:
|
|
||||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
|
||||||
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
|
|
||||||
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
|
|
||||||
|
|
||||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
|
||||||
self.added_tokens_dict = added_tokens
|
|
||||||
self.added_tokens_list = [text for (text, idx) in items]
|
|
||||||
self.vocab_size_base = vocab_size
|
|
||||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
||||||
self.fname_tokenizer = fname_tokenizer
|
|
||||||
|
|
||||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
|
||||||
|
|
||||||
for i, _ in enumerate(self.vocab):
|
|
||||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
|
||||||
|
|
||||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
for text in self.added_tokens_list:
|
|
||||||
score = -1000.0
|
|
||||||
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
|
||||||
|
|
||||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
yield from self.bpe_tokens()
|
|
||||||
yield from self.added_tokens()
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
||||||
|
|
||||||
|
|
||||||
class SentencePieceVocab(Vocab):
|
|
||||||
tokenizer_model = "llama"
|
|
||||||
name = "spm"
|
|
||||||
|
|
||||||
def __init__(self, base_path: Path):
|
|
||||||
added_tokens: dict[str, int] = {}
|
|
||||||
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
|
|
||||||
# normal location
|
|
||||||
try:
|
|
||||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
|
||||||
added_tokens = json.load(f)
|
|
||||||
except FileNotFoundError:
|
|
||||||
pass
|
|
||||||
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
|
|
||||||
# not found in alternate location either
|
|
||||||
raise FileNotFoundError('Cannot find tokenizer.model')
|
|
||||||
|
|
||||||
self.sentencepiece_tokenizer = SentencePieceProcessor()
|
|
||||||
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
|
|
||||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
|
||||||
|
|
||||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
|
||||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
|
||||||
actual_new_ids = sorted(new_tokens.keys())
|
|
||||||
|
|
||||||
if expected_new_ids != actual_new_ids:
|
|
||||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
|
||||||
|
|
||||||
# Token pieces that were added to the base vocabulary.
|
|
||||||
self.added_tokens_dict = added_tokens
|
|
||||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
|
||||||
self.vocab_size_base = vocab_size
|
|
||||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
||||||
self.fname_tokenizer = fname_tokenizer
|
|
||||||
|
|
||||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
tokenizer = self.sentencepiece_tokenizer
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
|
||||||
piece = tokenizer.IdToPiece(i)
|
|
||||||
text = piece.encode("utf-8")
|
|
||||||
score: float = tokenizer.GetScore(i)
|
|
||||||
|
|
||||||
toktype = gguf.TokenType.NORMAL
|
|
||||||
if tokenizer.IsUnknown(i):
|
|
||||||
toktype = gguf.TokenType.UNKNOWN
|
|
||||||
if tokenizer.IsControl(i):
|
|
||||||
toktype = gguf.TokenType.CONTROL
|
|
||||||
|
|
||||||
# NOTE: I think added_tokens are user defined.
|
|
||||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
|
||||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
|
||||||
|
|
||||||
if tokenizer.IsUnused(i):
|
|
||||||
toktype = gguf.TokenType.UNUSED
|
|
||||||
if tokenizer.IsByte(i):
|
|
||||||
toktype = gguf.TokenType.BYTE
|
|
||||||
|
|
||||||
yield text, score, toktype
|
|
||||||
|
|
||||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
for text in self.added_tokens_list:
|
|
||||||
score = -1000.0
|
|
||||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
|
||||||
|
|
||||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
yield from self.sentencepiece_tokens()
|
|
||||||
yield from self.added_tokens()
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
||||||
|
|
||||||
|
|
||||||
class LlamaHfVocab(Vocab):
|
|
||||||
tokenizer_model = "llama"
|
|
||||||
name = "hfft"
|
|
||||||
|
|
||||||
def __init__(self, base_path: Path):
|
|
||||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
|
||||||
# if this fails, FileNotFoundError propagates to caller
|
|
||||||
with open(fname_tokenizer, encoding='utf-8') as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
# pre-check so we know if we need transformers
|
|
||||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
|
||||||
is_llama3 = (
|
|
||||||
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
|
|
||||||
and not tokenizer_model.get('byte_fallback', True)
|
|
||||||
)
|
|
||||||
if is_llama3:
|
|
||||||
raise TypeError('Llama 3 must be converted with BpeVocab')
|
|
||||||
|
|
||||||
if not is_llama3 and (
|
|
||||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
|
||||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
|
||||||
):
|
|
||||||
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
|
|
||||||
|
|
||||||
try:
|
|
||||||
from transformers import AutoTokenizer
|
|
||||||
except ImportError as e:
|
|
||||||
raise ImportError(
|
|
||||||
"To use LlamaHfVocab, please install the `transformers` package. "
|
|
||||||
"You can install it with `pip install transformers`."
|
|
||||||
) from e
|
|
||||||
|
|
||||||
# Allow the tokenizer to default to slow or fast versions.
|
|
||||||
# Explicitly set tokenizer to use local paths.
|
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
||||||
base_path,
|
|
||||||
cache_dir=base_path,
|
|
||||||
local_files_only=True,
|
|
||||||
)
|
|
||||||
assert self.tokenizer.is_fast # assume tokenizer.json is used
|
|
||||||
|
|
||||||
# Initialize lists and dictionaries for added tokens
|
|
||||||
self.added_tokens_list = []
|
|
||||||
self.added_tokens_dict = dict()
|
|
||||||
self.added_tokens_ids = set()
|
|
||||||
|
|
||||||
# Process added tokens
|
|
||||||
for tok, tokidx in sorted(
|
|
||||||
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
|
||||||
):
|
|
||||||
# Only consider added tokens that are not in the base vocabulary
|
|
||||||
if tokidx >= self.tokenizer.vocab_size:
|
|
||||||
self.added_tokens_list.append(tok)
|
|
||||||
self.added_tokens_dict[tok] = tokidx
|
|
||||||
self.added_tokens_ids.add(tokidx)
|
|
||||||
|
|
||||||
# Store special tokens and their IDs
|
|
||||||
self.specials = {
|
|
||||||
tok: self.tokenizer.get_vocab()[tok]
|
|
||||||
for tok in self.tokenizer.all_special_tokens
|
|
||||||
}
|
|
||||||
self.special_ids = set(self.tokenizer.all_special_ids)
|
|
||||||
|
|
||||||
# Set vocabulary sizes
|
|
||||||
self.vocab_size_base = self.tokenizer.vocab_size
|
|
||||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
||||||
|
|
||||||
self.fname_tokenizer = fname_tokenizer
|
|
||||||
|
|
||||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
reverse_vocab = {
|
|
||||||
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
|
||||||
}
|
|
||||||
|
|
||||||
for token_id in range(self.vocab_size_base):
|
|
||||||
# Skip processing added tokens here
|
|
||||||
if token_id in self.added_tokens_ids:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Convert token text to bytes
|
|
||||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
|
||||||
|
|
||||||
# Yield token text, score, and type
|
|
||||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
|
||||||
token_id, token_text, self.special_ids # Reuse already stored special IDs
|
|
||||||
)
|
|
||||||
|
|
||||||
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
|
|
||||||
# Special case for byte tokens
|
|
||||||
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
|
||||||
return gguf.TokenType.BYTE
|
|
||||||
|
|
||||||
# Determine token type based on whether it's a special token
|
|
||||||
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
|
||||||
|
|
||||||
def get_token_score(self, token_id: int) -> float:
|
|
||||||
# Placeholder for actual logic to determine the token's score
|
|
||||||
# This needs to be implemented based on specific requirements
|
|
||||||
return -1000.0 # Default score
|
|
||||||
|
|
||||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
for text in self.added_tokens_list:
|
|
||||||
if text in self.specials:
|
|
||||||
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
|
|
||||||
score = self.get_token_score(self.specials[text])
|
|
||||||
else:
|
|
||||||
toktype = gguf.TokenType.USER_DEFINED
|
|
||||||
score = -1000.0
|
|
||||||
|
|
||||||
yield text.encode("utf-8"), score, toktype
|
|
||||||
|
|
||||||
def has_newline_token(self):
|
|
||||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
|
||||||
|
|
||||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
||||||
yield from self.hf_tokens()
|
|
||||||
yield from self.added_tokens()
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
||||||
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# data loading
|
# data loading
|
||||||
# TODO: reuse (probably move to gguf.py?)
|
# TODO: reuse (probably move to gguf.py?)
|
@ -178,6 +178,7 @@ struct cmd_params {
|
|||||||
std::vector<ggml_type> type_v;
|
std::vector<ggml_type> type_v;
|
||||||
std::vector<int> n_threads;
|
std::vector<int> n_threads;
|
||||||
std::vector<int> n_gpu_layers;
|
std::vector<int> n_gpu_layers;
|
||||||
|
std::vector<std::string> rpc_servers;
|
||||||
std::vector<llama_split_mode> split_mode;
|
std::vector<llama_split_mode> split_mode;
|
||||||
std::vector<int> main_gpu;
|
std::vector<int> main_gpu;
|
||||||
std::vector<bool> no_kv_offload;
|
std::vector<bool> no_kv_offload;
|
||||||
@ -202,6 +203,7 @@ static const cmd_params cmd_params_defaults = {
|
|||||||
/* type_v */ {GGML_TYPE_F16},
|
/* type_v */ {GGML_TYPE_F16},
|
||||||
/* n_threads */ {cpu_get_num_math()},
|
/* n_threads */ {cpu_get_num_math()},
|
||||||
/* n_gpu_layers */ {99},
|
/* n_gpu_layers */ {99},
|
||||||
|
/* rpc_servers */ {""},
|
||||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||||
/* main_gpu */ {0},
|
/* main_gpu */ {0},
|
||||||
/* no_kv_offload */ {false},
|
/* no_kv_offload */ {false},
|
||||||
@ -230,6 +232,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||||
|
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||||
@ -384,6 +387,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
auto p = split<int>(argv[i], split_delim);
|
auto p = split<int>(argv[i], split_delim);
|
||||||
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
||||||
|
} else if (arg == "-rpc" || arg == "--rpc") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rpc_servers.push_back(argv[i]);
|
||||||
} else if (arg == "-sm" || arg == "--split-mode") {
|
} else if (arg == "-sm" || arg == "--split-mode") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -519,6 +528,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||||
|
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
|
||||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||||
@ -541,6 +551,7 @@ struct cmd_params_instance {
|
|||||||
ggml_type type_v;
|
ggml_type type_v;
|
||||||
int n_threads;
|
int n_threads;
|
||||||
int n_gpu_layers;
|
int n_gpu_layers;
|
||||||
|
std::string rpc_servers;
|
||||||
llama_split_mode split_mode;
|
llama_split_mode split_mode;
|
||||||
int main_gpu;
|
int main_gpu;
|
||||||
bool no_kv_offload;
|
bool no_kv_offload;
|
||||||
@ -553,6 +564,9 @@ struct cmd_params_instance {
|
|||||||
llama_model_params mparams = llama_model_default_params();
|
llama_model_params mparams = llama_model_default_params();
|
||||||
|
|
||||||
mparams.n_gpu_layers = n_gpu_layers;
|
mparams.n_gpu_layers = n_gpu_layers;
|
||||||
|
if (!rpc_servers.empty()) {
|
||||||
|
mparams.rpc_servers = rpc_servers.c_str();
|
||||||
|
}
|
||||||
mparams.split_mode = split_mode;
|
mparams.split_mode = split_mode;
|
||||||
mparams.main_gpu = main_gpu;
|
mparams.main_gpu = main_gpu;
|
||||||
mparams.tensor_split = tensor_split.data();
|
mparams.tensor_split = tensor_split.data();
|
||||||
@ -564,6 +578,7 @@ struct cmd_params_instance {
|
|||||||
bool equal_mparams(const cmd_params_instance & other) const {
|
bool equal_mparams(const cmd_params_instance & other) const {
|
||||||
return model == other.model &&
|
return model == other.model &&
|
||||||
n_gpu_layers == other.n_gpu_layers &&
|
n_gpu_layers == other.n_gpu_layers &&
|
||||||
|
rpc_servers == other.rpc_servers &&
|
||||||
split_mode == other.split_mode &&
|
split_mode == other.split_mode &&
|
||||||
main_gpu == other.main_gpu &&
|
main_gpu == other.main_gpu &&
|
||||||
use_mmap == other.use_mmap &&
|
use_mmap == other.use_mmap &&
|
||||||
@ -592,6 +607,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||||||
// this ordering minimizes the number of times that each model needs to be reloaded
|
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||||
for (const auto & m : params.model)
|
for (const auto & m : params.model)
|
||||||
for (const auto & nl : params.n_gpu_layers)
|
for (const auto & nl : params.n_gpu_layers)
|
||||||
|
for (const auto & rpc : params.rpc_servers)
|
||||||
for (const auto & sm : params.split_mode)
|
for (const auto & sm : params.split_mode)
|
||||||
for (const auto & mg : params.main_gpu)
|
for (const auto & mg : params.main_gpu)
|
||||||
for (const auto & ts : params.tensor_split)
|
for (const auto & ts : params.tensor_split)
|
||||||
@ -618,6 +634,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||||||
/* .type_v = */ tv,
|
/* .type_v = */ tv,
|
||||||
/* .n_threads = */ nt,
|
/* .n_threads = */ nt,
|
||||||
/* .n_gpu_layers = */ nl,
|
/* .n_gpu_layers = */ nl,
|
||||||
|
/* .rpc_servers = */ rpc,
|
||||||
/* .split_mode = */ sm,
|
/* .split_mode = */ sm,
|
||||||
/* .main_gpu = */ mg,
|
/* .main_gpu = */ mg,
|
||||||
/* .no_kv_offload= */ nkvo,
|
/* .no_kv_offload= */ nkvo,
|
||||||
@ -643,6 +660,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||||||
/* .type_v = */ tv,
|
/* .type_v = */ tv,
|
||||||
/* .n_threads = */ nt,
|
/* .n_threads = */ nt,
|
||||||
/* .n_gpu_layers = */ nl,
|
/* .n_gpu_layers = */ nl,
|
||||||
|
/* .rpc_servers = */ rpc,
|
||||||
/* .split_mode = */ sm,
|
/* .split_mode = */ sm,
|
||||||
/* .main_gpu = */ mg,
|
/* .main_gpu = */ mg,
|
||||||
/* .no_kv_offload= */ nkvo,
|
/* .no_kv_offload= */ nkvo,
|
||||||
@ -668,6 +686,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||||||
/* .type_v = */ tv,
|
/* .type_v = */ tv,
|
||||||
/* .n_threads = */ nt,
|
/* .n_threads = */ nt,
|
||||||
/* .n_gpu_layers = */ nl,
|
/* .n_gpu_layers = */ nl,
|
||||||
|
/* .rpc_servers = */ rpc,
|
||||||
/* .split_mode = */ sm,
|
/* .split_mode = */ sm,
|
||||||
/* .main_gpu = */ mg,
|
/* .main_gpu = */ mg,
|
||||||
/* .no_kv_offload= */ nkvo,
|
/* .no_kv_offload= */ nkvo,
|
||||||
@ -692,6 +711,7 @@ struct test {
|
|||||||
static const bool kompute;
|
static const bool kompute;
|
||||||
static const bool metal;
|
static const bool metal;
|
||||||
static const bool sycl;
|
static const bool sycl;
|
||||||
|
static const bool rpc;
|
||||||
static const bool gpu_blas;
|
static const bool gpu_blas;
|
||||||
static const bool blas;
|
static const bool blas;
|
||||||
static const std::string cpu_info;
|
static const std::string cpu_info;
|
||||||
@ -790,6 +810,9 @@ struct test {
|
|||||||
if (sycl) {
|
if (sycl) {
|
||||||
return GGML_SYCL_NAME;
|
return GGML_SYCL_NAME;
|
||||||
}
|
}
|
||||||
|
if (rpc) {
|
||||||
|
return "RPC";
|
||||||
|
}
|
||||||
if (gpu_blas) {
|
if (gpu_blas) {
|
||||||
return "GPU BLAS";
|
return "GPU BLAS";
|
||||||
}
|
}
|
||||||
@ -803,7 +826,7 @@ struct test {
|
|||||||
static const std::vector<std::string> & get_fields() {
|
static const std::vector<std::string> & get_fields() {
|
||||||
static const std::vector<std::string> fields = {
|
static const std::vector<std::string> fields = {
|
||||||
"build_commit", "build_number",
|
"build_commit", "build_number",
|
||||||
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
|
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
|
||||||
"cpu_info", "gpu_info",
|
"cpu_info", "gpu_info",
|
||||||
"model_filename", "model_type", "model_size", "model_n_params",
|
"model_filename", "model_type", "model_size", "model_n_params",
|
||||||
"n_batch", "n_ubatch",
|
"n_batch", "n_ubatch",
|
||||||
@ -859,7 +882,7 @@ struct test {
|
|||||||
std::vector<std::string> values = {
|
std::vector<std::string> values = {
|
||||||
build_commit, std::to_string(build_number),
|
build_commit, std::to_string(build_number),
|
||||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
||||||
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
|
std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
|
||||||
cpu_info, gpu_info,
|
cpu_info, gpu_info,
|
||||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||||
@ -894,6 +917,7 @@ const bool test::metal = !!ggml_cpu_has_metal();
|
|||||||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||||
const bool test::blas = !!ggml_cpu_has_blas();
|
const bool test::blas = !!ggml_cpu_has_blas();
|
||||||
const bool test::sycl = !!ggml_cpu_has_sycl();
|
const bool test::sycl = !!ggml_cpu_has_sycl();
|
||||||
|
const bool test::rpc = !!ggml_cpu_has_rpc();
|
||||||
const std::string test::cpu_info = get_cpu_info();
|
const std::string test::cpu_info = get_cpu_info();
|
||||||
const std::string test::gpu_info = get_gpu_info();
|
const std::string test::gpu_info = get_gpu_info();
|
||||||
|
|
||||||
|
@ -54,10 +54,10 @@ python ./examples/llava/convert-image-encoder-to-gguf \
|
|||||||
--projector-type ldpv2
|
--projector-type ldpv2
|
||||||
```
|
```
|
||||||
|
|
||||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./convert.py path/to/MobileVLM-1.7B
|
python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B
|
||||||
```
|
```
|
||||||
|
|
||||||
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
|
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
|
||||||
|
@ -50,10 +50,10 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
|||||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||||
```
|
```
|
||||||
|
|
||||||
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./convert.py ../llava-v1.5-7b --skip-unknown
|
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
|
||||||
```
|
```
|
||||||
|
|
||||||
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
|
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
|
||||||
@ -92,7 +92,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto
|
|||||||
|
|
||||||
6) Then convert the model to gguf format:
|
6) Then convert the model to gguf format:
|
||||||
```console
|
```console
|
||||||
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||||
```
|
```
|
||||||
|
|
||||||
7) And finally we can run the llava-cli using the 1.6 model version:
|
7) And finally we can run the llava-cli using the 1.6 model version:
|
||||||
|
@ -1,3 +1,3 @@
|
|||||||
-r ../../requirements/requirements-convert.txt
|
-r ../../requirements/requirements-convert-legacy-llama.txt
|
||||||
pillow~=10.2.0
|
pillow~=10.2.0
|
||||||
torch~=2.1.1
|
torch~=2.1.1
|
||||||
|
@ -1,98 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them.
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
|
|
||||||
- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.
|
|
||||||
- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
|
|
||||||
- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
|
|
||||||
- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
|
|
||||||
- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
|
|
||||||
|
|
||||||
Old quant types (some base model types require these):
|
|
||||||
- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
|
|
||||||
- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
|
|
||||||
- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
|
|
||||||
- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
|
|
||||||
|
|
||||||
New quant types (recommended):
|
|
||||||
- Q2_K: smallest, extreme quality loss - not recommended
|
|
||||||
- Q3_K: alias for Q3_K_M
|
|
||||||
- Q3_K_S: very small, very high quality loss
|
|
||||||
- Q3_K_M: very small, very high quality loss
|
|
||||||
- Q3_K_L: small, substantial quality loss
|
|
||||||
- Q4_K: alias for Q4_K_M
|
|
||||||
- Q4_K_S: small, significant quality loss
|
|
||||||
- Q4_K_M: medium, balanced quality - recommended
|
|
||||||
- Q5_K: alias for Q5_K_M
|
|
||||||
- Q5_K_S: large, low quality loss - recommended
|
|
||||||
- Q5_K_M: large, very low quality loss - recommended
|
|
||||||
- Q6_K: very large, extremely low quality loss
|
|
||||||
- Q8_0: very large, extremely low quality loss - not recommended
|
|
||||||
- F16: extremely large, virtually no quality loss - not recommended
|
|
||||||
- F32: absolutely huge, lossless - not recommended
|
|
||||||
"""
|
|
||||||
import subprocess
|
|
||||||
subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
|
|
||||||
def main(model, model_type, outname, outdir, quants, keep_fp16):
|
|
||||||
if not os.path.isdir(model):
|
|
||||||
print(f"Model not found at {model}. Downloading...")
|
|
||||||
try:
|
|
||||||
if outname is None:
|
|
||||||
outname = model.split('/')[-1]
|
|
||||||
model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
|
|
||||||
except Exception as e:
|
|
||||||
raise Exception(f"Could not download the model: {e}")
|
|
||||||
|
|
||||||
if outdir is None:
|
|
||||||
outdir = f'../models/{outname}'
|
|
||||||
|
|
||||||
if not os.path.isfile(f"{model}/config.json"):
|
|
||||||
raise Exception(f"Could not find config.json in {model}")
|
|
||||||
|
|
||||||
os.makedirs(outdir, exist_ok=True)
|
|
||||||
|
|
||||||
print("Building llama.cpp")
|
|
||||||
subprocess.run(f"cd .. && make quantize", shell=True, check=True)
|
|
||||||
|
|
||||||
fp16 = f"{outdir}/{outname}.gguf.fp16.bin"
|
|
||||||
|
|
||||||
print(f"Making unquantised GGUF at {fp16}")
|
|
||||||
if not os.path.isfile(fp16):
|
|
||||||
if model_type != "llama":
|
|
||||||
subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True)
|
|
||||||
else:
|
|
||||||
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
|
|
||||||
else:
|
|
||||||
print(f"Unquantised GGML already exists at: {fp16}")
|
|
||||||
|
|
||||||
print("Making quants")
|
|
||||||
for type in quants:
|
|
||||||
outfile = f"{outdir}/{outname}.gguf.{type}.bin"
|
|
||||||
print(f"Making {type} : {outfile}")
|
|
||||||
subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
|
|
||||||
|
|
||||||
if not keep_fp16:
|
|
||||||
os.remove(fp16)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
|
|
||||||
parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name')
|
|
||||||
parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.')
|
|
||||||
parser.add_argument('--outname', default=None, help='Output model(s) name')
|
|
||||||
parser.add_argument('--outdir', default=None, help='Output directory')
|
|
||||||
parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
|
|
||||||
parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16)
|
|
File diff suppressed because one or more lines are too long
12
ggml-cuda.cu
12
ggml-cuda.cu
@ -1870,7 +1870,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
|
||||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||||
// use cublasGemmStridedBatchedEx
|
// use cublasGemmStridedBatchedEx
|
||||||
CUBLAS_CHECK(
|
CUBLAS_CHECK(
|
||||||
@ -2886,7 +2886,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||||||
case GGML_OP_CONT:
|
case GGML_OP_CONT:
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
|
return true;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
|
return ggml_is_contiguous(op->src[0]);
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
case GGML_OP_SUM_ROWS:
|
case GGML_OP_SUM_ROWS:
|
||||||
@ -2903,10 +2905,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
||||||
#else
|
#else
|
||||||
if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
|
if (op->src[0]->ne[0] == 128) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
|
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
|
||||||
|
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#include "concat.cuh"
|
#include "concat.cuh"
|
||||||
|
|
||||||
|
// contiguous kernels
|
||||||
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
||||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
if (nidx >= ne0) {
|
if (nidx >= ne0) {
|
||||||
@ -92,39 +93,104 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n
|
|||||||
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// non-contiguous kernel (slow)
|
||||||
|
static __global__ void concat_f32_non_cont(
|
||||||
|
const char * src0,
|
||||||
|
const char * src1,
|
||||||
|
char * dst,
|
||||||
|
int64_t ne00,
|
||||||
|
int64_t ne01,
|
||||||
|
int64_t ne02,
|
||||||
|
int64_t ne03,
|
||||||
|
uint64_t nb00,
|
||||||
|
uint64_t nb01,
|
||||||
|
uint64_t nb02,
|
||||||
|
uint64_t nb03,
|
||||||
|
int64_t /*ne10*/,
|
||||||
|
int64_t /*ne11*/,
|
||||||
|
int64_t /*ne12*/,
|
||||||
|
int64_t /*ne13*/,
|
||||||
|
uint64_t nb10,
|
||||||
|
uint64_t nb11,
|
||||||
|
uint64_t nb12,
|
||||||
|
uint64_t nb13,
|
||||||
|
int64_t ne0,
|
||||||
|
int64_t /*ne1*/,
|
||||||
|
int64_t /*ne2*/,
|
||||||
|
int64_t /*ne3*/,
|
||||||
|
uint64_t nb0,
|
||||||
|
uint64_t nb1,
|
||||||
|
uint64_t nb2,
|
||||||
|
uint64_t nb3,
|
||||||
|
int32_t dim) {
|
||||||
|
const int64_t i3 = blockIdx.z;
|
||||||
|
const int64_t i2 = blockIdx.y;
|
||||||
|
const int64_t i1 = blockIdx.x;
|
||||||
|
|
||||||
|
int64_t o[4] = {0, 0, 0, 0};
|
||||||
|
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||||
|
|
||||||
|
const float * x;
|
||||||
|
|
||||||
|
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
|
||||||
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||||
|
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||||
|
} else {
|
||||||
|
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||||
|
}
|
||||||
|
|
||||||
|
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
*y = *x;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * src0 = dst->src[0];
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
const ggml_tensor * src1 = dst->src[1];
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
|
||||||
const float * src0_d = (const float *)src0->data;
|
|
||||||
const float * src1_d = (const float *)src1->data;
|
|
||||||
|
|
||||||
float * dst_d = (float *)dst->data;
|
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||||
|
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
||||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
if (dim != 3) {
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
const float * src0_d = (const float *)src0->data;
|
||||||
concat_f32_cuda(
|
const float * src1_d = (const float *)src1->data;
|
||||||
src0_d + i3 * (src0->nb[3] / 4),
|
|
||||||
src1_d + i3 * (src1->nb[3] / 4),
|
float * dst_d = (float *)dst->data;
|
||||||
dst_d + i3 * ( dst->nb[3] / 4),
|
|
||||||
src0->ne[0], src0->ne[1], src0->ne[2],
|
if (dim != 3) {
|
||||||
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||||
|
concat_f32_cuda(
|
||||||
|
src0_d + i3 * (src0->nb[3] / 4),
|
||||||
|
src1_d + i3 * (src1->nb[3] / 4),
|
||||||
|
dst_d + i3 * ( dst->nb[3] / 4),
|
||||||
|
src0->ne[0], src0->ne[1], src0->ne[2],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const size_t size0 = ggml_nbytes(src0);
|
||||||
|
const size_t size1 = ggml_nbytes(src1);
|
||||||
|
|
||||||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||||||
|
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
const size_t size0 = ggml_nbytes(src0);
|
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
|
||||||
const size_t size1 = ggml_nbytes(src1);
|
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
|
||||||
|
(const char *)src0->data,
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
(const char *)src1->data,
|
||||||
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
( char *)dst->data,
|
||||||
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||||
|
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||||
|
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
|
||||||
|
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
|
||||||
|
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,4 +1,8 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
|
#include "convert.cuh"
|
||||||
|
#include "vecdotq.cuh"
|
||||||
|
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
|
|
||||||
@ -34,11 +38,523 @@ typedef void (* fattn_kernel_t)(
|
|||||||
const int nb11,
|
const int nb11,
|
||||||
const int nb12,
|
const int nb12,
|
||||||
const int nb13,
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
const int ne0,
|
const int ne0,
|
||||||
const int ne1,
|
const int ne1,
|
||||||
const int ne2,
|
const int ne2,
|
||||||
const int ne3);
|
const int ne3);
|
||||||
|
|
||||||
|
typedef half (*vec_dot_KQ_f16_t)(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
||||||
|
typedef float (*vec_dot_KQ_f32_t)(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
||||||
|
|
||||||
|
template<typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
|
||||||
|
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
|
||||||
|
half sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const int ib = k_KQ / QI8_1;
|
||||||
|
const int iqs4 = k_KQ % QI4_0;
|
||||||
|
const int shift = k_KQ & (QI8_1/2);
|
||||||
|
|
||||||
|
const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||||
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
||||||
|
|
||||||
|
const int sumi = __dp4a(v, u, 0);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
||||||
|
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
|
||||||
|
} else
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
{
|
||||||
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||||
|
|
||||||
|
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(K_c);
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
|
||||||
|
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
|
||||||
|
T sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const int ib = k_KQ / QI8_1;
|
||||||
|
const int iqs4 = k_KQ % QI4_1;
|
||||||
|
const int shift = k_KQ & (QI8_1/2);
|
||||||
|
|
||||||
|
const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||||
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
||||||
|
|
||||||
|
const int sumi = __dp4a(v, u, 0);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
||||||
|
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
|
||||||
|
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
|
||||||
|
} else
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
{
|
||||||
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
||||||
|
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
||||||
|
|
||||||
|
sum += (T) (sumid4d8 + m4s8scaled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(K_c);
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
|
||||||
|
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
|
||||||
|
T sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const int ib = k_KQ / QI8_1;
|
||||||
|
const int iqs4 = k_KQ % QI5_0;
|
||||||
|
const int iqs8 = k_KQ % QI8_1;
|
||||||
|
const int shift = k_KQ & (QI8_1/2);
|
||||||
|
|
||||||
|
int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||||
|
const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
|
||||||
|
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||||
|
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||||
|
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||||
|
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||||
|
|
||||||
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
||||||
|
|
||||||
|
const int sumi = __dp4a(v, u, 0);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
|
||||||
|
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
|
||||||
|
} else
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
{
|
||||||
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||||
|
|
||||||
|
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(K_c);
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
|
||||||
|
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
|
||||||
|
T sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const int ib = k_KQ / QI8_1;
|
||||||
|
const int iqs4 = k_KQ % QI5_1;
|
||||||
|
const int iqs8 = k_KQ % QI8_1;
|
||||||
|
const int shift = k_KQ & (QI8_1/2);
|
||||||
|
|
||||||
|
int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||||
|
const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
|
||||||
|
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||||
|
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||||
|
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||||
|
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||||
|
|
||||||
|
const int u = Q_q8[k_KQ_0/WARP_SIZE];
|
||||||
|
|
||||||
|
const int sumi = __dp4a(v, u, 0);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
|
||||||
|
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
|
||||||
|
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
|
||||||
|
} else
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
{
|
||||||
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||||
|
|
||||||
|
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
|
||||||
|
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
|
||||||
|
|
||||||
|
sum += (T) (sumid5d8 + m5s8scaled);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(K_c);
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
|
||||||
|
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
|
||||||
|
T sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const int ib = k_KQ / QI8_0;
|
||||||
|
const int iqs = k_KQ % QI8_0;
|
||||||
|
|
||||||
|
const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
|
||||||
|
|
||||||
|
T Q_d;
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||||
|
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
|
||||||
|
} else {
|
||||||
|
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||||
|
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
|
||||||
|
}
|
||||||
|
|
||||||
|
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
#else
|
||||||
|
GGML_UNUSED(K_c);
|
||||||
|
GGML_UNUSED(Q_v);
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, int D>
|
||||||
|
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
|
||||||
|
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
|
||||||
|
|
||||||
|
const half2 * K_h2 = (const half2 *) K_c;
|
||||||
|
GGML_UNUSED(Q_q8);
|
||||||
|
GGML_UNUSED(Q_ds_v);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
const half2 * Q_h2 = (const half2 *) Q_v;
|
||||||
|
|
||||||
|
half2 sum2 = make_half2(0.0f, 0.0f);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const half2 K_ik = K_h2[k_KQ];
|
||||||
|
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
|
||||||
|
}
|
||||||
|
|
||||||
|
return __low2half(sum2) + __high2half(sum2);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
const float2 * Q_f2 = (const float2 *) Q_v;
|
||||||
|
|
||||||
|
float sum = 0.0f;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
const half2 K_ik = K_h2[k_KQ];
|
||||||
|
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
|
||||||
|
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Tds>
|
||||||
|
static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||||
|
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
|
||||||
|
|
||||||
|
float vals[sizeof(int)] = {0.0f};
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < sizeof(int); ++l) {
|
||||||
|
vals[l] = scale * x[4*threadIdx.x + l];
|
||||||
|
}
|
||||||
|
|
||||||
|
float amax = fabsf(vals[0]);
|
||||||
|
float sum = vals[0];
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 1; l < sizeof(int); ++l) {
|
||||||
|
amax = fmaxf(amax, fabsf(vals[l]));
|
||||||
|
sum += vals[l];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
|
||||||
|
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
|
||||||
|
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = amax / 127;
|
||||||
|
int q32 = 0;
|
||||||
|
int8_t * q8 = (int8_t *) &q32;
|
||||||
|
|
||||||
|
if (d != 0.0f) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < sizeof(int); ++l) {
|
||||||
|
q8[l] = roundf(vals[l] / d);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
yq32[threadIdx.x] = q32;
|
||||||
|
if (threadIdx.x % QI8_1 == 0) {
|
||||||
|
if (std::is_same<Tds, half2>::value) {
|
||||||
|
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
|
||||||
|
} else {
|
||||||
|
((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
|
||||||
|
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||||
|
|
||||||
|
const int64_t ib = i / QK4_0;
|
||||||
|
const int iqs = i % (QK4_0/2);
|
||||||
|
const int shift = (i % QK4_0) / (QK4_0/2);
|
||||||
|
|
||||||
|
const T d = x[ib].d;
|
||||||
|
const int q0 = x[ib].qs[iqs];
|
||||||
|
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
return ((half) d)*((half) q);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
return ((float) d)*((float) q);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||||
|
|
||||||
|
const int64_t ib = i / QK4_1;
|
||||||
|
const int iqs = i % (QK4_1/2);
|
||||||
|
const int shift = (i % QK4_1) / (QK4_1/2);
|
||||||
|
|
||||||
|
const half2 dm = x[ib].dm;
|
||||||
|
const int q0 = x[ib].qs[iqs];
|
||||||
|
const int q = ((q0 >> (4*shift)) & 0x0F);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
return __low2half(dm)*((half) q) + __high2half(dm);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
return __low2float(dm)*((float) q) + __high2float(dm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||||
|
|
||||||
|
const int64_t ib = i / QK5_0;
|
||||||
|
const int idq = i % QK5_0;
|
||||||
|
const int iqs = i % (QK5_0/2);
|
||||||
|
const int shift = (i % QK5_0) / (QK5_0/2);
|
||||||
|
|
||||||
|
const T d = x[ib].d;
|
||||||
|
const int ql0 = x[ib].qs[iqs];
|
||||||
|
const int qh0 = get_int_from_uint8(x[ib].qh, 0);
|
||||||
|
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
||||||
|
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
||||||
|
const int q = (ql | qh) - 16;
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
return ((half) d)*((half) q);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
return ((float) d)*((float) q);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||||
|
|
||||||
|
const int64_t ib = i / QK5_1;
|
||||||
|
const int idq = i % QK5_1;
|
||||||
|
const int iqs = i % (QK5_1/2);
|
||||||
|
const int shift = (i % QK5_1) / (QK5_1/2);
|
||||||
|
|
||||||
|
const half2 dm = x[ib].dm;
|
||||||
|
const int ql0 = x[ib].qs[iqs];
|
||||||
|
const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
|
||||||
|
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
||||||
|
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
||||||
|
const int q = (ql | qh);
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
return __low2half(dm)*((half) q) + __high2half(dm);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
return __low2float(dm)*((float) q) + __high2float(dm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||||
|
|
||||||
|
const int64_t ib = i / QK8_0;
|
||||||
|
const int iqs = i % QK8_0;
|
||||||
|
|
||||||
|
const T d = x[ib].d;
|
||||||
|
const int q = x[ib].qs[iqs];
|
||||||
|
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
if (std::is_same<T, half>::value) {
|
||||||
|
return ((half) d)*((half) q);
|
||||||
|
}
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
|
||||||
|
return ((float) d)*((float) q);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
|
||||||
|
const half * x = (const half *) vx;
|
||||||
|
|
||||||
|
return x[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D>
|
||||||
|
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
|
||||||
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
|
||||||
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
|
||||||
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D>
|
||||||
|
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
|
||||||
|
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
|
||||||
|
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
|
||||||
|
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
|
||||||
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
|
||||||
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
|
||||||
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
|
||||||
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
|
||||||
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
|
||||||
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||||
|
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
|
||||||
|
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
|
||||||
|
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
|
||||||
|
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
|
||||||
|
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
|
||||||
|
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
|
||||||
|
nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
template<int D, int parallel_blocks> // D == head size
|
template<int D, int parallel_blocks> // D == head size
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
__launch_bounds__(D, 1)
|
__launch_bounds__(D, 1)
|
||||||
@ -83,8 +599,32 @@ static __global__ void flash_attn_combine_results(
|
|||||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void on_no_fattn_vec_case(const int D) {
|
||||||
|
if (D == 64) {
|
||||||
|
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
|
||||||
|
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
||||||
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
} else if (D == 128) {
|
||||||
|
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
||||||
|
fprintf(stderr, "Supported combinations:\n");
|
||||||
|
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
||||||
|
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
|
||||||
|
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
||||||
|
fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
|
||||||
|
fprintf(stderr, "Only f16 is supported.\n");
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <int D, int parallel_blocks>
|
template <int D, int parallel_blocks>
|
||||||
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
void launch_fattn(
|
||||||
|
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
|
||||||
|
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
|
||||||
|
) {
|
||||||
const ggml_tensor * Q = dst->src[0];
|
const ggml_tensor * Q = dst->src[0];
|
||||||
const ggml_tensor * K = dst->src[1];
|
const ggml_tensor * K = dst->src[1];
|
||||||
const ggml_tensor * V = dst->src[2];
|
const ggml_tensor * V = dst->src[2];
|
||||||
@ -94,8 +634,6 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|||||||
ggml_tensor * KQV = dst;
|
ggml_tensor * KQV = dst;
|
||||||
|
|
||||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
|
||||||
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
|
||||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||||
@ -107,9 +645,49 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|||||||
ggml_cuda_pool & pool = ctx.pool();
|
ggml_cuda_pool & pool = ctx.pool();
|
||||||
cudaStream_t main_stream = ctx.stream();
|
cudaStream_t main_stream = ctx.stream();
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc<half> K_f16(pool);
|
||||||
|
ggml_cuda_pool_alloc<half> V_f16(pool);
|
||||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||||
|
|
||||||
|
char * K_data = (char *) K->data;
|
||||||
|
size_t nb11 = K->nb[1];
|
||||||
|
size_t nb12 = K->nb[2];
|
||||||
|
size_t nb13 = K->nb[3];
|
||||||
|
|
||||||
|
char * V_data = (char *) V->data;
|
||||||
|
size_t nb21 = V->nb[1];
|
||||||
|
size_t nb22 = V->nb[2];
|
||||||
|
size_t nb23 = V->nb[3];
|
||||||
|
|
||||||
|
if (need_f16_K && K->type != GGML_TYPE_F16) {
|
||||||
|
K_f16.alloc(ggml_nelements(K));
|
||||||
|
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
|
||||||
|
to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
|
||||||
|
K_data = (char *) K_f16.ptr;
|
||||||
|
|
||||||
|
const size_t bs = ggml_blck_size(K->type);
|
||||||
|
const size_t ts = ggml_type_size(K->type);
|
||||||
|
|
||||||
|
nb11 = nb11*bs*sizeof(half)/ts;
|
||||||
|
nb12 = nb12*bs*sizeof(half)/ts;
|
||||||
|
nb13 = nb13*bs*sizeof(half)/ts;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (need_f16_V && V->type != GGML_TYPE_F16) {
|
||||||
|
V_f16.alloc(ggml_nelements(V));
|
||||||
|
to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
|
||||||
|
to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
|
||||||
|
V_data = (char *) V_f16.ptr;
|
||||||
|
|
||||||
|
const size_t bs = ggml_blck_size(V->type);
|
||||||
|
const size_t ts = ggml_type_size(V->type);
|
||||||
|
|
||||||
|
nb21 = nb21*bs*sizeof(half)/ts;
|
||||||
|
nb22 = nb22*bs*sizeof(half)/ts;
|
||||||
|
nb23 = nb23*bs*sizeof(half)/ts;
|
||||||
|
}
|
||||||
|
|
||||||
if (parallel_blocks > 1) {
|
if (parallel_blocks > 1) {
|
||||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||||
@ -133,8 +711,8 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|||||||
|
|
||||||
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
||||||
(const char *) Q->data,
|
(const char *) Q->data,
|
||||||
(const char *) K->data,
|
K_data,
|
||||||
(const char *) V->data,
|
V_data,
|
||||||
mask ? ((const char *) mask->data) : nullptr,
|
mask ? ((const char *) mask->data) : nullptr,
|
||||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||||
scale, max_bias, m0, m1, n_head_log2,
|
scale, max_bias, m0, m1, n_head_log2,
|
||||||
@ -142,7 +720,8 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
|
|||||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||||
K->nb[1], K->nb[2], K->nb[3],
|
nb11, nb12, nb13,
|
||||||
|
nb21, nb22, nb23,
|
||||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||||
);
|
);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f16(
|
|||||||
const int nb11,
|
const int nb11,
|
||||||
const int nb12,
|
const int nb12,
|
||||||
const int nb13,
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
const int ne0,
|
const int ne0,
|
||||||
const int ne1,
|
const int ne1,
|
||||||
const int ne2,
|
const int ne2,
|
||||||
@ -275,13 +278,13 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||||||
constexpr int D = 64;
|
constexpr int D = 64;
|
||||||
constexpr int nwarps = 8;
|
constexpr int nwarps = 8;
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
} break;
|
} break;
|
||||||
case 128: {
|
case 128: {
|
||||||
constexpr int D = 128;
|
constexpr int D = 128;
|
||||||
constexpr int nwarps = 8;
|
constexpr int nwarps = 8;
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
} break;
|
} break;
|
||||||
default: {
|
default: {
|
||||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f32(
|
|||||||
const int nb11,
|
const int nb11,
|
||||||
const int nb12,
|
const int nb12,
|
||||||
const int nb13,
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
const int ne0,
|
const int ne0,
|
||||||
const int ne1,
|
const int ne1,
|
||||||
const int ne2,
|
const int ne2,
|
||||||
@ -272,13 +275,13 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||||||
constexpr int D = 64;
|
constexpr int D = 64;
|
||||||
constexpr int nwarps = 8;
|
constexpr int nwarps = 8;
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
} break;
|
} break;
|
||||||
case 128: {
|
case 128: {
|
||||||
constexpr int D = 128;
|
constexpr int D = 128;
|
||||||
constexpr int nwarps = 8;
|
constexpr int nwarps = 8;
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
} break;
|
} break;
|
||||||
default: {
|
default: {
|
||||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
@ -1,330 +0,0 @@
|
|||||||
#include "common.cuh"
|
|
||||||
#include "fattn-common.cuh"
|
|
||||||
#include "fattn-vec-f16.cuh"
|
|
||||||
|
|
||||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(D, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_vec_ext_f16(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
#if FP16_AVAILABLE
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
||||||
|
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
||||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
|
||||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
|
||||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
|
||||||
const half * maskh = (const half *) mask + ne11*ic0;
|
|
||||||
|
|
||||||
const int stride_KV = nb11 / sizeof(half);
|
|
||||||
const int stride_KV2 = nb11 / sizeof(half2);
|
|
||||||
|
|
||||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
|
||||||
const half slopeh = __float2half(slopef);
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
|
||||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
||||||
__builtin_assume(tid < D);
|
|
||||||
|
|
||||||
__shared__ half KQ[ncols*D];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
|
||||||
}
|
|
||||||
half2 * KQ2 = (half2 *) KQ;
|
|
||||||
|
|
||||||
half kqmax[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax[j] = -HALF_MAX_HALF;
|
|
||||||
}
|
|
||||||
half kqsum[ncols] = {0.0f};
|
|
||||||
|
|
||||||
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
|
||||||
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
if (threadIdx.y == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
|
||||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Convert Q to half2 and store in registers:
|
|
||||||
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
|
||||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
|
||||||
|
|
||||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
||||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
||||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
||||||
|
|
||||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
|
||||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
|
||||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
|
||||||
half kqmax_new = kqmax[0];
|
|
||||||
half kqmax_new_arr[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax_new_arr[j] = kqmax[j];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
||||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
||||||
|
|
||||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 sum2[ncols] = {{0.0f, 0.0f}};
|
|
||||||
#pragma unroll
|
|
||||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
||||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
||||||
|
|
||||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
sum2[j] = warp_reduce_sum(sum2[j]);
|
|
||||||
half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
|
|
||||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
|
||||||
|
|
||||||
if (ncols == 1) {
|
|
||||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
|
||||||
} else {
|
|
||||||
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
KQ[j*D + i_KQ] = sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
|
||||||
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
|
|
||||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
|
||||||
kqmax[j] = kqmax_new_j;
|
|
||||||
|
|
||||||
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
|
||||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
||||||
KQ[j*D + tid] = val;
|
|
||||||
|
|
||||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
|
||||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 V_k;
|
|
||||||
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
|
||||||
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
||||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
||||||
|
|
||||||
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= kqsum[j_VKQ];
|
|
||||||
}
|
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif // FP16_AVAILABLE
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
ggml_tensor * KQV = dst;
|
|
||||||
ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 1;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64: {
|
|
||||||
constexpr int D = 64;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 128: {
|
|
||||||
constexpr int D = 128;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 256: {
|
|
||||||
constexpr int D = 256;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int cols_per_block, int parallel_blocks>
|
|
||||||
void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64: {
|
|
||||||
constexpr int D = 64;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 128: {
|
|
||||||
constexpr int D = 128;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
default: {
|
|
||||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * KQV = dst;
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
|
||||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
|
||||||
constexpr int cols_per_block = 2;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
|
||||||
constexpr int cols_per_block = 4;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 1;
|
|
||||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
}
|
|
@ -1,5 +1,397 @@
|
|||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(D, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_vec_ext_f16(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
||||||
|
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||||
|
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
Q += nb02* blockIdx.y + nb01*ic0;
|
||||||
|
K += nb12*(blockIdx.y / gqa_ratio);
|
||||||
|
V += nb22*(blockIdx.y / gqa_ratio);
|
||||||
|
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
__builtin_assume(tid < D);
|
||||||
|
|
||||||
|
__shared__ half KQ[ncols*D];
|
||||||
|
half2 * KQ2 = (half2 *) KQ;
|
||||||
|
|
||||||
|
half kqmax[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax[j] = -HALF_MAX_HALF;
|
||||||
|
}
|
||||||
|
half kqsum[ncols] = {0.0f};
|
||||||
|
|
||||||
|
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
||||||
|
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
if (threadIdx.y == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
||||||
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||||
|
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||||
|
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
||||||
|
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||||
|
if (Q_q8_1) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (j0 + nwarps > ncols && j >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
// Set memory to zero if out of bounds:
|
||||||
|
if (ncols > 2 && ic0 + j >= ne01) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
tmp_q_i32[i] = 0;
|
||||||
|
}
|
||||||
|
if (threadIdx.x < D/QK8_1) {
|
||||||
|
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float * Q_f = (const float *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||||
|
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
} else {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||||
|
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||||
|
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||||
|
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||||
|
half kqmax_new = kqmax[0];
|
||||||
|
half kqmax_new_arr[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax_new_arr[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||||
|
|
||||||
|
if (ncols == 1) {
|
||||||
|
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||||
|
} else {
|
||||||
|
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
KQ[j*D + i_KQ] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||||
|
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
|
||||||
|
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||||
|
kqmax[j] = kqmax_new_j;
|
||||||
|
|
||||||
|
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
||||||
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||||
|
KQ[j*D + tid] = val;
|
||||||
|
|
||||||
|
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||||
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 V_k;
|
||||||
|
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
|
||||||
|
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
|
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= kqsum[j_VKQ];
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||||
|
constexpr bool need_f16_K = D != 128;
|
||||||
|
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * KQV = dst;
|
||||||
|
ggml_tensor * Q = dst->src[0];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
|
|
||||||
|
GGML_ASSERT(K->type == type_K);
|
||||||
|
GGML_ASSERT(V->type == type_V);
|
||||||
|
|
||||||
|
if (Q->ne[1] == 1) {
|
||||||
|
constexpr int cols_per_block = 1;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] == 2) {
|
||||||
|
constexpr int cols_per_block = 2;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 4) {
|
||||||
|
constexpr int cols_per_block = 4;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_vec_f16_case \
|
||||||
|
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
@ -1,279 +0,0 @@
|
|||||||
#include "common.cuh"
|
|
||||||
#include "fattn-common.cuh"
|
|
||||||
#include "fattn-vec-f32.cuh"
|
|
||||||
|
|
||||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(D, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_vec_ext_f32(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
||||||
|
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
||||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
|
||||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
|
||||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
|
||||||
const half * maskh = (const half *) mask + ne11*ic0;
|
|
||||||
|
|
||||||
const int stride_KV = nb11 / sizeof(half);
|
|
||||||
const int stride_KV2 = nb11 / sizeof(half2);
|
|
||||||
|
|
||||||
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
|
||||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
||||||
__builtin_assume(tid < D);
|
|
||||||
|
|
||||||
__shared__ float KQ[ncols*D];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
float kqmax[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax[j] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
float kqsum[ncols] = {0.0f};
|
|
||||||
|
|
||||||
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
|
||||||
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
if (threadIdx.y == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
|
||||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Convert Q to half2 and store in registers:
|
|
||||||
float2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
|
|
||||||
Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
|
||||||
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
|
||||||
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float VKQ[ncols] = {0.0f};
|
|
||||||
|
|
||||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
||||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
||||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
||||||
|
|
||||||
float kqmax_new_arr[ncols];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqmax_new_arr[j] = kqmax[j];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
||||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
||||||
|
|
||||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
float sum[ncols] = {0.0f};
|
|
||||||
#pragma unroll
|
|
||||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
||||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
||||||
|
|
||||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
|
|
||||||
sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
sum[j] = warp_reduce_sum(sum[j]);
|
|
||||||
sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
|
||||||
|
|
||||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
|
|
||||||
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
KQ[j*D + i_KQ] = sum[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
float kqmax_new_j = kqmax_new_arr[j];
|
|
||||||
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
||||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
||||||
|
|
||||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
|
||||||
kqmax[j] = kqmax_new_j;
|
|
||||||
|
|
||||||
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
|
||||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
||||||
KQ[j*D + tid] = val;
|
|
||||||
|
|
||||||
VKQ[j] *= KQ_max_scale;
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k = 0; k < D; ++k) {
|
|
||||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
VKQ[j] += V_ki*KQ[j*D + k];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
||||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
||||||
|
|
||||||
float dst_val = VKQ[j_VKQ];
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= kqsum[j_VKQ];
|
|
||||||
}
|
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int cols_per_block, int parallel_blocks>
|
|
||||||
void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64: {
|
|
||||||
constexpr int D = 64;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
case 128: {
|
|
||||||
constexpr int D = 128;
|
|
||||||
constexpr int nwarps = D/WARP_SIZE;
|
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
|
||||||
} break;
|
|
||||||
default: {
|
|
||||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
|
||||||
constexpr int cols_per_block = 1;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
|
||||||
constexpr int cols_per_block = 2;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
|
||||||
constexpr int cols_per_block = 4;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int parallel_blocks = 1;
|
|
||||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
|
||||||
}
|
|
@ -1,3 +1,378 @@
|
|||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(D, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_vec_ext_f32(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
|
||||||
|
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||||
|
constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
Q += nb02* blockIdx.y + nb01*ic0;
|
||||||
|
K += nb12*(blockIdx.y / gqa_ratio);
|
||||||
|
V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||||
|
__builtin_assume(tid < D);
|
||||||
|
|
||||||
|
__shared__ float KQ[ncols*D];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
float kqmax[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax[j] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
float kqsum[ncols] = {0.0f};
|
||||||
|
|
||||||
|
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
||||||
|
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
if (threadIdx.y == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||||
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||||
|
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
|
||||||
|
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
|
||||||
|
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||||
|
if (Q_q8_1) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (j0 + nwarps > ncols && j >= ncols) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
// Set memory to zero if out of bounds:
|
||||||
|
if (ncols > 2 && ic0 + j >= ne01) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
tmp_q_i32[i] = 0;
|
||||||
|
}
|
||||||
|
if (threadIdx.x < D/QK8_1) {
|
||||||
|
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float * Q_f = (const float *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||||
|
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||||
|
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
} else {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||||
|
Q_f2[j][i0/WARP_SIZE].x *= scale;
|
||||||
|
Q_f2[j][i0/WARP_SIZE].y *= scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float VKQ[ncols] = {0.0f};
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
float kqmax_new_arr[ncols];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqmax_new_arr[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
||||||
|
sum = warp_reduce_sum(sum);
|
||||||
|
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||||
|
|
||||||
|
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
||||||
|
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
KQ[j*D + i_KQ] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float kqmax_new_j = kqmax_new_arr[j];
|
||||||
|
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||||
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||||
|
|
||||||
|
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||||
|
kqmax[j] = kqmax_new_j;
|
||||||
|
|
||||||
|
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
||||||
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||||
|
KQ[j*D + tid] = val;
|
||||||
|
|
||||||
|
VKQ[j] *= KQ_max_scale;
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k < D; ++k) {
|
||||||
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
VKQ[j] += V_ki*KQ[j*D + k];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols; ++j) {
|
||||||
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
|
float dst_val = VKQ[j_VKQ];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= kqsum[j_VKQ];
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||||
|
constexpr bool need_f16_K = D != 128;
|
||||||
|
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int D, ggml_type type_K, ggml_type type_V>
|
||||||
|
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * KQV = dst;
|
||||||
|
ggml_tensor * Q = dst->src[0];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
|
|
||||||
|
GGML_ASSERT(K->type == type_K);
|
||||||
|
GGML_ASSERT(V->type == type_V);
|
||||||
|
|
||||||
|
if (Q->ne[1] == 1) {
|
||||||
|
constexpr int cols_per_block = 1;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] == 2) {
|
||||||
|
constexpr int cols_per_block = 2;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 4) {
|
||||||
|
constexpr int cols_per_block = 4;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 8;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_vec_f32_case \
|
||||||
|
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
|
||||||
|
extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||||
|
490
ggml-cuda/fattn-wmma-f16.cuh
Normal file
490
ggml-cuda/fattn-wmma-f16.cuh
Normal file
@ -0,0 +1,490 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
|
||||||
|
#if FP16_MMA_AVAILABLE
|
||||||
|
#include <mma.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||||
|
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_ext_f16(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int nb21,
|
||||||
|
const int nb22,
|
||||||
|
const int nb23,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
#if FP16_MMA_AVAILABLE
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||||
|
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||||
|
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||||
|
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||||
|
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||||
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||||
|
|
||||||
|
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||||
|
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||||
|
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||||
|
|
||||||
|
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||||
|
constexpr int D_padded = D + 8;
|
||||||
|
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||||
|
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||||
|
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||||
|
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||||
|
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||||
|
|
||||||
|
const int stride_Q = nb01 / sizeof(float);
|
||||||
|
const int stride_KV = nb11 / sizeof(half);
|
||||||
|
|
||||||
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
|
const half2 slope2 = make_half2(slopef, slopef);
|
||||||
|
|
||||||
|
frag_b Q_b[D/16][ncols/frag_n];
|
||||||
|
|
||||||
|
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||||
|
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||||
|
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||||
|
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||||
|
float * KQ_f = (float *) KQ;
|
||||||
|
half2 * KQ2 = (half2 *) KQ;
|
||||||
|
|
||||||
|
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||||
|
float KQ_max_f[ncols/nwarps];
|
||||||
|
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||||
|
half2 KQ_max_h2[ncols/nwarps];
|
||||||
|
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||||
|
}
|
||||||
|
|
||||||
|
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||||
|
half2 * VKQ2 = (half2 *) VKQ;
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D && i >= D) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Iterate over ne11 == previous tokens:
|
||||||
|
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||||
|
// Calculate tile of KQ:
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||||
|
frag_c_KQ KQ_c[ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||||
|
frag_a_K K_a;
|
||||||
|
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Calculate softmax for each KQ column using the current max. value.
|
||||||
|
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||||
|
}
|
||||||
|
|
||||||
|
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||||
|
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||||
|
}
|
||||||
|
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||||
|
|
||||||
|
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||||
|
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||||
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||||
|
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||||
|
}
|
||||||
|
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||||
|
|
||||||
|
float KQ_rowsum_add = 0.0f;
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||||
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||||
|
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||||
|
}
|
||||||
|
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||||
|
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||||
|
}
|
||||||
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||||
|
|
||||||
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||||
|
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||||
|
} else {
|
||||||
|
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||||
|
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||||
|
}
|
||||||
|
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||||
|
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||||
|
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||||
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||||
|
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||||
|
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||||
|
|
||||||
|
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||||
|
const int k = k0 + threadIdx.x;
|
||||||
|
|
||||||
|
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||||
|
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||||
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||||
|
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||||
|
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||||
|
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||||
|
}
|
||||||
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||||
|
|
||||||
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||||
|
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||||
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||||
|
nvcuda::wmma::load_matrix_sync(
|
||||||
|
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||||
|
KQ + j0*(kqar*kqs_padded) + k,
|
||||||
|
kqar*kqs_padded);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||||
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||||
|
|
||||||
|
frag_a_V v_a;
|
||||||
|
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||||
|
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||||
|
nvcuda::wmma::store_matrix_sync(
|
||||||
|
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||||
|
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||||
|
D_padded, nvcuda::wmma::mem_col_major);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
half2 VKQ_scale;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||||
|
} else {
|
||||||
|
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||||
|
#pragma unroll
|
||||||
|
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||||
|
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||||
|
}
|
||||||
|
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j_VKQ = j0 + threadIdx.y;
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
|
||||||
|
float KQ_rowsum_j;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||||
|
} else {
|
||||||
|
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
if (i0 + WARP_SIZE > D && i >= D) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= KQ_rowsum_j;
|
||||||
|
}
|
||||||
|
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
float2 dst_meta_val;
|
||||||
|
if (std::is_same<KQ_acc_t, float>::value) {
|
||||||
|
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||||
|
} else {
|
||||||
|
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||||
|
}
|
||||||
|
dst_meta_val.y = KQ_rowsum_j;
|
||||||
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // FP16_MMA_AVAILABLE
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int get_max_power_of_2(int x) {
|
||||||
|
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||||
|
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||||
|
|
||||||
|
// Number of VKQ rows calculated in parallel:
|
||||||
|
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||||
|
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||||
|
}
|
||||||
|
|
||||||
|
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||||
|
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||||
|
|
||||||
|
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||||
|
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
|
constexpr int nwarps = 4;
|
||||||
|
|
||||||
|
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||||
|
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||||
|
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||||
|
|
||||||
|
if (4*blocks_num_pb1 < 2*nsm) {
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (2*blocks_num_pb1 < 2*nsm) {
|
||||||
|
constexpr int parallel_blocks = 2;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
|
||||||
|
template void ggml_cuda_flash_attn_ext_wmma_f16_case \
|
||||||
|
<D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
||||||
|
// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||||
|
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||||
|
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
@ -4,454 +4,295 @@
|
|||||||
#include "fattn-tile-f32.cuh"
|
#include "fattn-tile-f32.cuh"
|
||||||
#include "fattn-vec-f16.cuh"
|
#include "fattn-vec-f16.cuh"
|
||||||
#include "fattn-vec-f32.cuh"
|
#include "fattn-vec-f32.cuh"
|
||||||
|
#include "fattn-wmma-f16.cuh"
|
||||||
#include "fattn.cuh"
|
#include "fattn.cuh"
|
||||||
|
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
|
|
||||||
#if FP16_MMA_AVAILABLE
|
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
#include <mma.h>
|
const ggml_tensor * KQV = dst;
|
||||||
#endif
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
const int32_t precision = KQV->op_params[2];
|
||||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
|
||||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
||||||
static __global__ void flash_attn_ext_f16(
|
|
||||||
const char * __restrict__ Q,
|
|
||||||
const char * __restrict__ K,
|
|
||||||
const char * __restrict__ V,
|
|
||||||
const char * __restrict__ mask,
|
|
||||||
float * __restrict__ dst,
|
|
||||||
float2 * __restrict__ dst_meta,
|
|
||||||
const float scale,
|
|
||||||
const float max_bias,
|
|
||||||
const float m0,
|
|
||||||
const float m1,
|
|
||||||
const uint32_t n_head_log2,
|
|
||||||
const int ne00,
|
|
||||||
const int ne01,
|
|
||||||
const int ne02,
|
|
||||||
const int ne03,
|
|
||||||
const int ne10,
|
|
||||||
const int ne11,
|
|
||||||
const int ne12,
|
|
||||||
const int ne13,
|
|
||||||
const int ne31,
|
|
||||||
const int nb31,
|
|
||||||
const int nb01,
|
|
||||||
const int nb02,
|
|
||||||
const int nb03,
|
|
||||||
const int nb11,
|
|
||||||
const int nb12,
|
|
||||||
const int nb13,
|
|
||||||
const int ne0,
|
|
||||||
const int ne1,
|
|
||||||
const int ne2,
|
|
||||||
const int ne3) {
|
|
||||||
#if FP16_MMA_AVAILABLE
|
|
||||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
||||||
|
|
||||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
if (precision != GGML_PREC_DEFAULT) {
|
||||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
switch (Q->ne[0]) {
|
||||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
case 64:
|
||||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
break;
|
||||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
case 80:
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
break;
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
case 96:
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
break;
|
||||||
|
case 112:
|
||||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
break;
|
||||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
break;
|
||||||
constexpr int D_padded = D + 8;
|
case 256:
|
||||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
break;
|
||||||
|
default:
|
||||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
GGML_ASSERT(false);
|
||||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
break;
|
||||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
}
|
||||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
} else {
|
||||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
constexpr int cols_per_block = 32;
|
||||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
const int stride_Q = nb01 / sizeof(float);
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||||
const int stride_KV = nb11 / sizeof(half);
|
break;
|
||||||
|
case 80:
|
||||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||||
const half slopeh = __float2half(slopef);
|
break;
|
||||||
const half2 slope2 = make_half2(slopef, slopef);
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||||
frag_b Q_b[D/16][ncols/frag_n];
|
break;
|
||||||
|
case 112:
|
||||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
break;
|
||||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
case 128:
|
||||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
float * KQ_f = (float *) KQ;
|
break;
|
||||||
half2 * KQ2 = (half2 *) KQ;
|
// case 256:
|
||||||
|
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
// break;
|
||||||
float KQ_max_f[ncols/nwarps];
|
default:
|
||||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
GGML_ASSERT(false);
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
||||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
||||||
half2 KQ_max_h2[ncols/nwarps];
|
|
||||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
||||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
|
||||||
}
|
|
||||||
|
|
||||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
|
||||||
half2 * VKQ2 = (half2 *) VKQ;
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D && i >= D) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Iterate over ne11 == previous tokens:
|
|
||||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
|
||||||
// Calculate tile of KQ:
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
|
||||||
frag_c_KQ KQ_c[ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
|
||||||
}
|
|
||||||
#pragma unroll
|
|
||||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
|
||||||
frag_a_K K_a;
|
|
||||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// Calculate softmax for each KQ column using the current max. value.
|
|
||||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
|
||||||
}
|
|
||||||
|
|
||||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
|
||||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
|
||||||
}
|
|
||||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
|
||||||
|
|
||||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
|
||||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
|
||||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
||||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
|
||||||
}
|
|
||||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
|
||||||
|
|
||||||
float KQ_rowsum_add = 0.0f;
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
|
||||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
||||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
|
||||||
}
|
|
||||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
|
||||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
|
||||||
}
|
|
||||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
||||||
|
|
||||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
||||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
|
||||||
} else {
|
|
||||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
|
||||||
}
|
|
||||||
|
|
||||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
|
||||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
|
||||||
}
|
|
||||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
|
||||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
|
||||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
|
||||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
||||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
|
||||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
|
||||||
|
|
||||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
||||||
const int k = k0 + threadIdx.x;
|
|
||||||
|
|
||||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
|
||||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
|
||||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
||||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
|
||||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
|
||||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
|
||||||
}
|
|
||||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
||||||
|
|
||||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
||||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
||||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
||||||
nvcuda::wmma::load_matrix_sync(
|
|
||||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
|
||||||
KQ + j0*(kqar*kqs_padded) + k,
|
|
||||||
kqar*kqs_padded);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
||||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
||||||
|
|
||||||
frag_a_V v_a;
|
|
||||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
|
||||||
#pragma unroll
|
|
||||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
||||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
||||||
nvcuda::wmma::store_matrix_sync(
|
|
||||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
|
||||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
|
||||||
D_padded, nvcuda::wmma::mem_col_major);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
||||||
const int j = j0 + threadIdx.y;
|
|
||||||
|
|
||||||
half2 VKQ_scale;
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
|
||||||
} else {
|
|
||||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma unroll
|
|
||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
|
|
||||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
|
||||||
#pragma unroll
|
|
||||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
|
||||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
|
||||||
}
|
|
||||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
__syncthreads();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
constexpr int cols_per_block = 8;
|
||||||
const int j_VKQ = j0 + threadIdx.y;
|
switch (Q->ne[0]) {
|
||||||
if (ic0 + j_VKQ >= ne01) {
|
case 64:
|
||||||
return;
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
}
|
break;
|
||||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
float KQ_rowsum_j;
|
break;
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
case 128:
|
||||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
} else {
|
break;
|
||||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
case 256:
|
||||||
}
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
#pragma unroll
|
default:
|
||||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
GGML_ASSERT(false);
|
||||||
const int i = i0 + threadIdx.x;
|
|
||||||
if (i0 + WARP_SIZE > D && i >= D) {
|
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
dst_val /= KQ_rowsum_j;
|
|
||||||
}
|
|
||||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
|
||||||
}
|
}
|
||||||
|
return;
|
||||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
float2 dst_meta_val;
|
|
||||||
if (std::is_same<KQ_acc_t, float>::value) {
|
|
||||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
|
||||||
} else {
|
|
||||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
|
||||||
}
|
|
||||||
dst_meta_val.y = KQ_rowsum_j;
|
|
||||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 32) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 80:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 112:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 80:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 96:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 112:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 128:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
case 256:
|
||||||
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||||
|
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
||||||
|
return; \
|
||||||
|
} \
|
||||||
|
|
||||||
|
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
ggml_tensor * Q = dst->src[1];
|
||||||
|
ggml_tensor * K = dst->src[1];
|
||||||
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
#else
|
#else
|
||||||
NO_DEVICE_CODE;
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
#endif // FP16_MMA_AVAILABLE
|
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
|
on_no_fattn_vec_case(Q->ne[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr int get_max_power_of_2(int x) {
|
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||||
}
|
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
|
||||||
|
return; \
|
||||||
|
} \
|
||||||
|
|
||||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
ggml_tensor * Q = dst->src[1];
|
||||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
ggml_tensor * K = dst->src[1];
|
||||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
// Number of VKQ rows calculated in parallel:
|
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
}
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
|
||||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
|
||||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
|
||||||
|
|
||||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||||
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||||
const ggml_tensor * Q = dst->src[0];
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||||
|
|
||||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||||
|
|
||||||
if (4*blocks_num_pb1 < 2*nsm) {
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||||
constexpr int parallel_blocks = 4;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||||
return;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||||
}
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||||
if (2*blocks_num_pb1 < 2*nsm) {
|
|
||||||
constexpr int parallel_blocks = 2;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||||
return;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||||
}
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
constexpr int parallel_blocks = 1;
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
|
||||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#else
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||||
|
|
||||||
|
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||||
|
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||||
|
|
||||||
|
on_no_fattn_vec_case(Q->ne[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
@ -464,8 +305,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
|
|
||||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||||
if (cc >= CC_OFFSET_AMD) {
|
if (cc >= CC_OFFSET_AMD) {
|
||||||
if (precision == GGML_PREC_DEFAULT) {
|
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
} else {
|
} else {
|
||||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
}
|
}
|
||||||
@ -483,156 +324,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
|
|
||||||
if (!fp16_mma_available(cc)) {
|
if (!fp16_mma_available(cc)) {
|
||||||
if (Q->ne[1] <= 8) {
|
if (Q->ne[1] <= 8) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
} else {
|
} else {
|
||||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (precision != GGML_PREC_DEFAULT) {
|
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
||||||
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
|
if (precision == GGML_PREC_DEFAULT) {
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
|
return;
|
||||||
|
} else if(Q->ne[0] <= 128) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
|
||||||
constexpr int cols_per_block = 16;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
constexpr int cols_per_block = 32;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
break;
|
|
||||||
// case 256:
|
|
||||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
|
||||||
// break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
|
||||||
constexpr int cols_per_block = 8;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Q->ne[1] <= 32) {
|
|
||||||
constexpr int cols_per_block = 16;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int cols_per_block = 32;
|
|
||||||
constexpr int nwarps = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 80:
|
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 96:
|
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 112:
|
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
case 256:
|
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
@ -386,7 +386,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
|||||||
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
return vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
||||||
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -547,7 +547,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
|||||||
const float * x_dmf = (const float *) x_dm;
|
const float * x_dmf = (const float *) x_dm;
|
||||||
const float * y_df = (const float *) y_ds;
|
const float * y_df = (const float *) y_ds;
|
||||||
|
|
||||||
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
|
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
|
||||||
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
||||||
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
||||||
}
|
}
|
||||||
|
@ -170,6 +170,8 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -188,6 +190,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -202,6 +206,8 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
@ -61,7 +61,7 @@ static __global__ void rope(
|
|||||||
template<typename T, bool has_pos, bool has_freq_facs>
|
template<typename T, bool has_pos, bool has_freq_facs>
|
||||||
static __global__ void rope_neox(
|
static __global__ void rope_neox(
|
||||||
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
|
||||||
) {
|
) {
|
||||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
@ -85,15 +85,13 @@ static __global__ void rope_neox(
|
|||||||
const int i = row*ncols + ib*n_dims + ic/2;
|
const int i = row*ncols + ib*n_dims + ic/2;
|
||||||
const int i2 = row/p_delta_rows;
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
float cur_rot = inv_ndims * ic - ib;
|
|
||||||
|
|
||||||
const int p = has_pos ? pos[i2] : 0;
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
||||||
|
|
||||||
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor;
|
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;
|
||||||
|
|
||||||
float cos_theta, sin_theta;
|
float cos_theta, sin_theta;
|
||||||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
const float x0 = x[i + 0];
|
const float x0 = x[i + 0];
|
||||||
const float x1 = x[i + n_dims/2];
|
const float x1 = x[i + n_dims/2];
|
||||||
@ -174,30 +172,29 @@ static void rope_neox_cuda(
|
|||||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float inv_ndims = -1.0f / n_dims;
|
|
||||||
|
|
||||||
if (pos == nullptr) {
|
if (pos == nullptr) {
|
||||||
if (freq_factors == nullptr) {
|
if (freq_factors == nullptr) {
|
||||||
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
|
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims, freq_factors
|
theta_scale, freq_factors
|
||||||
);
|
);
|
||||||
} else {
|
} else {
|
||||||
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
|
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims, freq_factors
|
theta_scale, freq_factors
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (freq_factors == nullptr) {
|
if (freq_factors == nullptr) {
|
||||||
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
|
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims, freq_factors
|
theta_scale, freq_factors
|
||||||
);
|
);
|
||||||
} else {
|
} else {
|
||||||
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
|
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims, freq_factors
|
theta_scale, freq_factors
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -254,6 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src0->type == dst->type);
|
GGML_ASSERT(src0->type == dst->type);
|
||||||
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f16.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
@ -0,0 +1,5 @@
|
|||||||
|
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
||||||
|
|
||||||
|
#include "../fattn-vec-f32.cuh"
|
||||||
|
|
||||||
|
DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user