llama : add OuteTTS support (wip)

This commit is contained in:
Georgi Gerganov 2024-12-10 14:40:03 +02:00
parent 08ea539df2
commit 5e67008f38
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
4 changed files with 315 additions and 0 deletions

View File

@ -689,6 +689,9 @@ class Model:
return res return res
# Marker: End get_vocab_base_pre # Marker: End get_vocab_base_pre
def _set_vocab_none(self) -> None:
self.gguf_writer.add_tokenizer_model("none")
def _set_vocab_gpt2(self) -> None: def _set_vocab_gpt2(self) -> None:
tokens, toktypes, tokpre = self.get_vocab_base() tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2") self.gguf_writer.add_tokenizer_model("gpt2")
@ -2027,6 +2030,29 @@ class Qwen2VLModel(Model):
yield name, data yield name, data
@Model.register("OuteTTSVocoder")
class OuteTTSVocoderModel(Model):
model_arch = gguf.MODEL_ARCH.OUTETTS_VOC
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if \
name.endswith("codebook.cluster_size") or \
name.endswith("codebook.embed_avg") or \
name.endswith("codebook.inited"):
logger.debug(f"Skipping {name!r}")
return []
return [(self.map_tensor_name(name), data_torch)]
def set_vocab(self):
self._set_vocab_none()
def set_gguf_parameters(self):
self.gguf_writer.add_block_count(self.block_count)
@Model.register("Qwen2MoeForCausalLM") @Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model): class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE model_arch = gguf.MODEL_ARCH.QWEN2MOE

View File

@ -0,0 +1,141 @@
# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format
# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the OuteTTSS vocoder
#
# TODO: this script is LLM-generated and probably very inefficient and should be rewritten
import torch
import json
import os
import sys
import re
from safetensors.torch import save_file
# change path to script dir
os.chdir(os.path.dirname(os.path.abspath(__file__)))
# default
model_path = './model.pt';
# read from CLI
if len(sys.argv) > 1:
model_path = sys.argv[1]
# get the directory of the input model
path_dst = os.path.dirname(model_path)
print(f"Loading model from {model_path}")
model = torch.load(model_path, map_location='cpu')
#print(model)
# print all keys
for key in model.keys():
print(key)
if key == 'hyper_parameters':
#print(model[key])
# dump as json pretty
print(json.dumps(model[key], indent=4))
#if key != 'state_dict' and key != 'optimizer_states':
# print(model[key])
# Check if the loaded model is a state_dict or a model instance
if isinstance(model, torch.nn.Module):
state_dict = model.state_dict()
else:
state_dict = model
# Print the structure of the state_dict to understand its format
print("State dictionary keys:")
for key in state_dict.keys():
print(key)
# Ensure the state_dict is flat and contains only torch.Tensor objects
def flatten_state_dict(state_dict, parent_key='', sep='.'):
items = []
items_new = []
for k, v in state_dict.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, torch.Tensor):
items.append((new_key, v))
elif isinstance(v, dict):
items.extend(flatten_state_dict(v, new_key, sep=sep).items())
return dict(items)
size_total_mb = 0
for key, value in list(items):
# keep only what we need for inference
if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \
not key.startswith('state_dict.backbone.') and \
not key.startswith('state_dict.head.'):
print('Skipping key: ', key)
continue
new_key = key
new_key = new_key.replace('state_dict.', '')
# check if matches "backbone.pos_net.%d.bias" or "backbone.pos_net.%d.weight"
if new_key.startswith("backbone.pos_net."):
match = re.match(r"backbone\.pos_net\.(\d+)\.(bias|weight)", new_key)
if match:
new_key = f"backbone.pos_net.{match.group(1)}.norm.{match.group(2)}"
size_mb = value.element_size() * value.nelement() / (1024 * 1024)
print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}")
size_total_mb += size_mb
#print(key, '->', new_key, ': ', value)
#print(key, '->', new_key)
items_new.append((new_key, value))
print(f"Total size: {size_total_mb:8.2f} MB")
return dict(items_new)
flattened_state_dict = flatten_state_dict(state_dict)
# Convert the model to the safetensors format
output_path = path_dst + '/model.safetensors'
save_file(flattened_state_dict, output_path)
print(f"Model has been successfully converted and saved to {output_path}")
# Calculate the total size of the .safetensors file
total_size = os.path.getsize(output_path)
# Create the weight map
weight_map = {
"model.safetensors": ["*"] # Assuming all weights are in one file
}
# Create metadata for the index.json file
metadata = {
"total_size": total_size,
"weight_map": weight_map
}
# Save the metadata to index.json
index_path = path_dst + '/index.json'
with open(index_path, 'w') as f:
json.dump(metadata, f, indent=4)
print(f"Metadata has been saved to {index_path}")
config = {
"architectures": [
"OuteTTSVocoder"
],
"num_hidden_layers": 12
}
with open(path_dst + '/config.json', 'w') as f:
json.dump(config, f, indent=4)
print(f"Config has been saved to {path_dst + 'config.json'}")

View File

@ -261,11 +261,13 @@ class MODEL_ARCH(IntEnum):
GRANITE = auto() GRANITE = auto()
GRANITE_MOE = auto() GRANITE_MOE = auto()
CHAMELEON = auto() CHAMELEON = auto()
OUTETTS_VOC = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto() TOKEN_EMBD = auto()
TOKEN_EMBD_NORM = auto() TOKEN_EMBD_NORM = auto()
TOKEN_EMBD_SHIFT = auto()
TOKEN_TYPES = auto() TOKEN_TYPES = auto()
POS_EMBD = auto() POS_EMBD = auto()
OUTPUT = auto() OUTPUT = auto()
@ -370,6 +372,24 @@ class MODEL_TENSOR(IntEnum):
ENC_OUTPUT_NORM = auto() ENC_OUTPUT_NORM = auto()
CLS = auto() # classifier CLS = auto() # classifier
CLS_OUT = auto() # classifier output projection CLS_OUT = auto() # classifier output projection
CONV_NEXT_DW = auto()
CONV_NEXT_NORM = auto()
CONV_NEXT_SHIFT = auto()
CONV_NEXT_PW1 = auto()
CONV_NEXT_PW2 = auto()
CONV_NEXT_GAMMA = auto()
POS_NET_CONV1 = auto()
POS_NET_CONV2 = auto()
POS_NET_NORM = auto()
POS_NET_NORM1 = auto()
POS_NET_NORM2 = auto()
POS_NET_ATTN_NORM = auto()
POS_NET_ATTN_Q = auto()
POS_NET_ATTN_K = auto()
POS_NET_ATTN_V = auto()
POS_NET_ATTN_OUT = auto()
QNTZ_CBOOK_EMBD = auto()
HANN_WINDOW = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -425,11 +445,13 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GRANITE: "granite", MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe", MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon", MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.OUTETTS_VOC: "outetts-voc",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.TOKEN_EMBD_SHIFT: "token_embd_shift",
MODEL_TENSOR.TOKEN_TYPES: "token_types", MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd", MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT_NORM: "output_norm",
@ -534,6 +556,24 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm", MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
MODEL_TENSOR.CLS: "cls", MODEL_TENSOR.CLS: "cls",
MODEL_TENSOR.CLS_OUT: "cls.output", MODEL_TENSOR.CLS_OUT: "cls.output",
MODEL_TENSOR.CONV_NEXT_DW: "conv_next.{bid}.dw",
MODEL_TENSOR.CONV_NEXT_NORM: "conv_next.{bid}.norm",
MODEL_TENSOR.CONV_NEXT_SHIFT: "conv_next.{bid}.shift",
MODEL_TENSOR.CONV_NEXT_PW1: "conv_next.{bid}.pw1",
MODEL_TENSOR.CONV_NEXT_PW2: "conv_next.{bid}.pw2",
MODEL_TENSOR.CONV_NEXT_GAMMA: "conv_next.{bid}.gamma",
MODEL_TENSOR.POS_NET_CONV1: "pos_net.{bid}.conv1",
MODEL_TENSOR.POS_NET_CONV2: "pos_net.{bid}.conv2",
MODEL_TENSOR.POS_NET_NORM: "pos_net.{bid}.norm",
MODEL_TENSOR.POS_NET_NORM1: "pos_net.{bid}.norm1",
MODEL_TENSOR.POS_NET_NORM2: "pos_net.{bid}.norm2",
MODEL_TENSOR.POS_NET_ATTN_NORM: "pos_net.{bid}.attn_norm",
MODEL_TENSOR.POS_NET_ATTN_Q: "pos_net.{bid}.attn_q",
MODEL_TENSOR.POS_NET_ATTN_K: "pos_net.{bid}.attn_k",
MODEL_TENSOR.POS_NET_ATTN_V: "pos_net.{bid}.attn_v",
MODEL_TENSOR.POS_NET_ATTN_OUT: "pos_net.{bid}.attn_output",
MODEL_TENSOR.QNTZ_CBOOK_EMBD: "qntz.cbook.{bid}.embd",
MODEL_TENSOR.HANN_WINDOW: "hann_window",
} }
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -1372,6 +1412,31 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.OUTETTS_VOC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_EMBD_SHIFT,
MODEL_TENSOR.CONV_NEXT_DW,
MODEL_TENSOR.CONV_NEXT_NORM,
MODEL_TENSOR.CONV_NEXT_SHIFT,
MODEL_TENSOR.CONV_NEXT_PW1,
MODEL_TENSOR.CONV_NEXT_PW2,
MODEL_TENSOR.CONV_NEXT_GAMMA,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.POS_NET_CONV1,
MODEL_TENSOR.POS_NET_CONV2,
MODEL_TENSOR.POS_NET_NORM,
MODEL_TENSOR.POS_NET_NORM1,
MODEL_TENSOR.POS_NET_NORM2,
MODEL_TENSOR.POS_NET_ATTN_NORM,
MODEL_TENSOR.POS_NET_ATTN_Q,
MODEL_TENSOR.POS_NET_ATTN_K,
MODEL_TENSOR.POS_NET_ATTN_V,
MODEL_TENSOR.POS_NET_ATTN_OUT,
MODEL_TENSOR.QNTZ_CBOOK_EMBD,
MODEL_TENSOR.HANN_WINDOW,
],
# TODO # TODO
} }

View File

@ -28,6 +28,7 @@ class TensorNameMap:
"transformer.token_embeddings", # openelm "transformer.token_embeddings", # openelm
"shared", # t5 "shared", # t5
"rwkv.embeddings", # rwkv "rwkv.embeddings", # rwkv
"backbone.embed", # outetts
), ),
# Token type embeddings # Token type embeddings
@ -42,6 +43,11 @@ class TensorNameMap:
"emb_ln", # nomic-bert "emb_ln", # nomic-bert
"transformer.norm", # openelm "transformer.norm", # openelm
"rwkv.blocks.0.pre_ln", # rwkv "rwkv.blocks.0.pre_ln", # rwkv
"backbone.norm.scale", # outetts
),
MODEL_TENSOR.TOKEN_EMBD_SHIFT: (
"backbone.norm.shift", # outetts
), ),
# Position embeddings # Position embeddings
@ -60,6 +66,7 @@ class TensorNameMap:
"lm_head.linear", # phi2 "lm_head.linear", # phi2
"output_layer", # chatglm "output_layer", # chatglm
"head", # rwkv "head", # rwkv
"head.out", # outetts
), ),
# Output norm # Output norm
@ -80,6 +87,7 @@ class TensorNameMap:
"transformer.norm", # openelm "transformer.norm", # openelm
"model.norm", # nemotron "model.norm", # nemotron
"rwkv.ln_out", # rwkv "rwkv.ln_out", # rwkv
"backbone.final_layer_norm", # outetts
), ),
# Rope frequencies # Rope frequencies
@ -90,6 +98,10 @@ class TensorNameMap:
MODEL_TENSOR.ROPE_FACTORS_LONG: (), MODEL_TENSOR.ROPE_FACTORS_LONG: (),
MODEL_TENSOR.ROPE_FACTORS_SHORT: (), MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
MODEL_TENSOR.HANN_WINDOW: (
"head.istft.window", # outetts
),
} }
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
@ -681,6 +693,8 @@ class TensorNameMap:
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
), ),
############################################################################
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
MODEL_TENSOR.ENC_OUTPUT_NORM: ( MODEL_TENSOR.ENC_OUTPUT_NORM: (
"encoder.final_layer_norm", # t5 "encoder.final_layer_norm", # t5
), ),
@ -693,6 +707,75 @@ class TensorNameMap:
MODEL_TENSOR.CLS_OUT: ( MODEL_TENSOR.CLS_OUT: (
"classifier.out_proj", # roberta "classifier.out_proj", # roberta
), ),
#############################################################################
MODEL_TENSOR.CONV_NEXT_DW: (
"backbone.convnext.{bid}.dwconv", # outetts
),
MODEL_TENSOR.CONV_NEXT_NORM: (
"backbone.convnext.{bid}.norm.scale", # outetts
),
MODEL_TENSOR.CONV_NEXT_SHIFT: (
"backbone.convnext.{bid}.norm.shift", # outetts
),
MODEL_TENSOR.CONV_NEXT_PW1: (
"backbone.convnext.{bid}.pwconv1", # outetts
),
MODEL_TENSOR.CONV_NEXT_PW2: (
"backbone.convnext.{bid}.pwconv2", # outetts
),
MODEL_TENSOR.CONV_NEXT_GAMMA: (
"backbone.convnext.{bid}.gamma", # outetts
),
MODEL_TENSOR.POS_NET_CONV1: (
"backbone.pos_net.{bid}.conv1", # outetts
),
MODEL_TENSOR.POS_NET_CONV2: (
"backbone.pos_net.{bid}.conv2", # outetts
),
MODEL_TENSOR.POS_NET_NORM: (
"backbone.pos_net.{bid}.norm", # outetts
),
MODEL_TENSOR.POS_NET_NORM1: (
"backbone.pos_net.{bid}.norm1", # outetts
),
MODEL_TENSOR.POS_NET_NORM2: (
"backbone.pos_net.{bid}.norm2", # outetts
),
MODEL_TENSOR.POS_NET_ATTN_NORM: (
"backbone.pos_net.{bid}.norm", # outetts
),
MODEL_TENSOR.POS_NET_ATTN_Q: (
"backbone.pos_net.{bid}.q", # outetts
),
MODEL_TENSOR.POS_NET_ATTN_K: (
"backbone.pos_net.{bid}.k", # outetts
),
MODEL_TENSOR.POS_NET_ATTN_V: (
"backbone.pos_net.{bid}.v", # outetts
),
MODEL_TENSOR.POS_NET_ATTN_OUT: (
"backbone.pos_net.{bid}.proj_out", # outetts
),
MODEL_TENSOR.QNTZ_CBOOK_EMBD: (
"feature_extractor.encodec.quantizer.vq.layers.{bid}._codebook.embed", # outetts
),
} }
# architecture-specific block mappings # architecture-specific block mappings