mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-28 12:24:35 +00:00
llama : add OuteTTS support (wip)
This commit is contained in:
parent
08ea539df2
commit
5e67008f38
@ -689,6 +689,9 @@ class Model:
|
|||||||
return res
|
return res
|
||||||
# Marker: End get_vocab_base_pre
|
# Marker: End get_vocab_base_pre
|
||||||
|
|
||||||
|
def _set_vocab_none(self) -> None:
|
||||||
|
self.gguf_writer.add_tokenizer_model("none")
|
||||||
|
|
||||||
def _set_vocab_gpt2(self) -> None:
|
def _set_vocab_gpt2(self) -> None:
|
||||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||||
@ -2027,6 +2030,29 @@ class Qwen2VLModel(Model):
|
|||||||
yield name, data
|
yield name, data
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("OuteTTSVocoder")
|
||||||
|
class OuteTTSVocoderModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.OUTETTS_VOC
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
del bid # unused
|
||||||
|
|
||||||
|
if \
|
||||||
|
name.endswith("codebook.cluster_size") or \
|
||||||
|
name.endswith("codebook.embed_avg") or \
|
||||||
|
name.endswith("codebook.inited"):
|
||||||
|
logger.debug(f"Skipping {name!r}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
self._set_vocab_none()
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("Qwen2MoeForCausalLM")
|
@Model.register("Qwen2MoeForCausalLM")
|
||||||
class Qwen2MoeModel(Model):
|
class Qwen2MoeModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.QWEN2MOE
|
model_arch = gguf.MODEL_ARCH.QWEN2MOE
|
||||||
|
141
examples/tts/convert_pt_to_hf.py
Normal file
141
examples/tts/convert_pt_to_hf.py
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format
|
||||||
|
# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the OuteTTSS vocoder
|
||||||
|
#
|
||||||
|
# TODO: this script is LLM-generated and probably very inefficient and should be rewritten
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import re
|
||||||
|
|
||||||
|
from safetensors.torch import save_file
|
||||||
|
|
||||||
|
# change path to script dir
|
||||||
|
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
|
||||||
|
# default
|
||||||
|
model_path = './model.pt';
|
||||||
|
|
||||||
|
# read from CLI
|
||||||
|
if len(sys.argv) > 1:
|
||||||
|
model_path = sys.argv[1]
|
||||||
|
|
||||||
|
# get the directory of the input model
|
||||||
|
path_dst = os.path.dirname(model_path)
|
||||||
|
|
||||||
|
print(f"Loading model from {model_path}")
|
||||||
|
|
||||||
|
model = torch.load(model_path, map_location='cpu')
|
||||||
|
|
||||||
|
#print(model)
|
||||||
|
|
||||||
|
# print all keys
|
||||||
|
for key in model.keys():
|
||||||
|
print(key)
|
||||||
|
if key == 'hyper_parameters':
|
||||||
|
#print(model[key])
|
||||||
|
# dump as json pretty
|
||||||
|
print(json.dumps(model[key], indent=4))
|
||||||
|
#if key != 'state_dict' and key != 'optimizer_states':
|
||||||
|
# print(model[key])
|
||||||
|
|
||||||
|
# Check if the loaded model is a state_dict or a model instance
|
||||||
|
if isinstance(model, torch.nn.Module):
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
else:
|
||||||
|
state_dict = model
|
||||||
|
|
||||||
|
# Print the structure of the state_dict to understand its format
|
||||||
|
print("State dictionary keys:")
|
||||||
|
for key in state_dict.keys():
|
||||||
|
print(key)
|
||||||
|
|
||||||
|
# Ensure the state_dict is flat and contains only torch.Tensor objects
|
||||||
|
def flatten_state_dict(state_dict, parent_key='', sep='.'):
|
||||||
|
items = []
|
||||||
|
items_new = []
|
||||||
|
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
new_key = f"{parent_key}{sep}{k}" if parent_key else k
|
||||||
|
if isinstance(v, torch.Tensor):
|
||||||
|
items.append((new_key, v))
|
||||||
|
elif isinstance(v, dict):
|
||||||
|
items.extend(flatten_state_dict(v, new_key, sep=sep).items())
|
||||||
|
return dict(items)
|
||||||
|
|
||||||
|
size_total_mb = 0
|
||||||
|
|
||||||
|
for key, value in list(items):
|
||||||
|
# keep only what we need for inference
|
||||||
|
if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \
|
||||||
|
not key.startswith('state_dict.backbone.') and \
|
||||||
|
not key.startswith('state_dict.head.'):
|
||||||
|
print('Skipping key: ', key)
|
||||||
|
continue
|
||||||
|
|
||||||
|
new_key = key
|
||||||
|
|
||||||
|
new_key = new_key.replace('state_dict.', '')
|
||||||
|
|
||||||
|
# check if matches "backbone.pos_net.%d.bias" or "backbone.pos_net.%d.weight"
|
||||||
|
if new_key.startswith("backbone.pos_net."):
|
||||||
|
match = re.match(r"backbone\.pos_net\.(\d+)\.(bias|weight)", new_key)
|
||||||
|
if match:
|
||||||
|
new_key = f"backbone.pos_net.{match.group(1)}.norm.{match.group(2)}"
|
||||||
|
|
||||||
|
size_mb = value.element_size() * value.nelement() / (1024 * 1024)
|
||||||
|
print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}")
|
||||||
|
|
||||||
|
size_total_mb += size_mb
|
||||||
|
|
||||||
|
#print(key, '->', new_key, ': ', value)
|
||||||
|
#print(key, '->', new_key)
|
||||||
|
|
||||||
|
items_new.append((new_key, value))
|
||||||
|
|
||||||
|
print(f"Total size: {size_total_mb:8.2f} MB")
|
||||||
|
|
||||||
|
return dict(items_new)
|
||||||
|
|
||||||
|
flattened_state_dict = flatten_state_dict(state_dict)
|
||||||
|
|
||||||
|
|
||||||
|
# Convert the model to the safetensors format
|
||||||
|
output_path = path_dst + '/model.safetensors'
|
||||||
|
save_file(flattened_state_dict, output_path)
|
||||||
|
|
||||||
|
print(f"Model has been successfully converted and saved to {output_path}")
|
||||||
|
|
||||||
|
# Calculate the total size of the .safetensors file
|
||||||
|
total_size = os.path.getsize(output_path)
|
||||||
|
|
||||||
|
# Create the weight map
|
||||||
|
weight_map = {
|
||||||
|
"model.safetensors": ["*"] # Assuming all weights are in one file
|
||||||
|
}
|
||||||
|
|
||||||
|
# Create metadata for the index.json file
|
||||||
|
metadata = {
|
||||||
|
"total_size": total_size,
|
||||||
|
"weight_map": weight_map
|
||||||
|
}
|
||||||
|
|
||||||
|
# Save the metadata to index.json
|
||||||
|
index_path = path_dst + '/index.json'
|
||||||
|
with open(index_path, 'w') as f:
|
||||||
|
json.dump(metadata, f, indent=4)
|
||||||
|
|
||||||
|
print(f"Metadata has been saved to {index_path}")
|
||||||
|
|
||||||
|
config = {
|
||||||
|
"architectures": [
|
||||||
|
"OuteTTSVocoder"
|
||||||
|
],
|
||||||
|
"num_hidden_layers": 12
|
||||||
|
}
|
||||||
|
|
||||||
|
with open(path_dst + '/config.json', 'w') as f:
|
||||||
|
json.dump(config, f, indent=4)
|
||||||
|
|
||||||
|
print(f"Config has been saved to {path_dst + 'config.json'}")
|
@ -261,11 +261,13 @@ class MODEL_ARCH(IntEnum):
|
|||||||
GRANITE = auto()
|
GRANITE = auto()
|
||||||
GRANITE_MOE = auto()
|
GRANITE_MOE = auto()
|
||||||
CHAMELEON = auto()
|
CHAMELEON = auto()
|
||||||
|
OUTETTS_VOC = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
TOKEN_EMBD = auto()
|
TOKEN_EMBD = auto()
|
||||||
TOKEN_EMBD_NORM = auto()
|
TOKEN_EMBD_NORM = auto()
|
||||||
|
TOKEN_EMBD_SHIFT = auto()
|
||||||
TOKEN_TYPES = auto()
|
TOKEN_TYPES = auto()
|
||||||
POS_EMBD = auto()
|
POS_EMBD = auto()
|
||||||
OUTPUT = auto()
|
OUTPUT = auto()
|
||||||
@ -370,6 +372,24 @@ class MODEL_TENSOR(IntEnum):
|
|||||||
ENC_OUTPUT_NORM = auto()
|
ENC_OUTPUT_NORM = auto()
|
||||||
CLS = auto() # classifier
|
CLS = auto() # classifier
|
||||||
CLS_OUT = auto() # classifier output projection
|
CLS_OUT = auto() # classifier output projection
|
||||||
|
CONV_NEXT_DW = auto()
|
||||||
|
CONV_NEXT_NORM = auto()
|
||||||
|
CONV_NEXT_SHIFT = auto()
|
||||||
|
CONV_NEXT_PW1 = auto()
|
||||||
|
CONV_NEXT_PW2 = auto()
|
||||||
|
CONV_NEXT_GAMMA = auto()
|
||||||
|
POS_NET_CONV1 = auto()
|
||||||
|
POS_NET_CONV2 = auto()
|
||||||
|
POS_NET_NORM = auto()
|
||||||
|
POS_NET_NORM1 = auto()
|
||||||
|
POS_NET_NORM2 = auto()
|
||||||
|
POS_NET_ATTN_NORM = auto()
|
||||||
|
POS_NET_ATTN_Q = auto()
|
||||||
|
POS_NET_ATTN_K = auto()
|
||||||
|
POS_NET_ATTN_V = auto()
|
||||||
|
POS_NET_ATTN_OUT = auto()
|
||||||
|
QNTZ_CBOOK_EMBD = auto()
|
||||||
|
HANN_WINDOW = auto()
|
||||||
|
|
||||||
|
|
||||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
@ -425,11 +445,13 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.GRANITE: "granite",
|
MODEL_ARCH.GRANITE: "granite",
|
||||||
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
||||||
MODEL_ARCH.CHAMELEON: "chameleon",
|
MODEL_ARCH.CHAMELEON: "chameleon",
|
||||||
|
MODEL_ARCH.OUTETTS_VOC: "outetts-voc",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||||
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_SHIFT: "token_embd_shift",
|
||||||
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
@ -534,6 +556,24 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||||||
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
||||||
MODEL_TENSOR.CLS: "cls",
|
MODEL_TENSOR.CLS: "cls",
|
||||||
MODEL_TENSOR.CLS_OUT: "cls.output",
|
MODEL_TENSOR.CLS_OUT: "cls.output",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_DW: "conv_next.{bid}.dw",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_NORM: "conv_next.{bid}.norm",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_SHIFT: "conv_next.{bid}.shift",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW1: "conv_next.{bid}.pw1",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW2: "conv_next.{bid}.pw2",
|
||||||
|
MODEL_TENSOR.CONV_NEXT_GAMMA: "conv_next.{bid}.gamma",
|
||||||
|
MODEL_TENSOR.POS_NET_CONV1: "pos_net.{bid}.conv1",
|
||||||
|
MODEL_TENSOR.POS_NET_CONV2: "pos_net.{bid}.conv2",
|
||||||
|
MODEL_TENSOR.POS_NET_NORM: "pos_net.{bid}.norm",
|
||||||
|
MODEL_TENSOR.POS_NET_NORM1: "pos_net.{bid}.norm1",
|
||||||
|
MODEL_TENSOR.POS_NET_NORM2: "pos_net.{bid}.norm2",
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_NORM: "pos_net.{bid}.attn_norm",
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_Q: "pos_net.{bid}.attn_q",
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_K: "pos_net.{bid}.attn_k",
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_V: "pos_net.{bid}.attn_v",
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_OUT: "pos_net.{bid}.attn_output",
|
||||||
|
MODEL_TENSOR.QNTZ_CBOOK_EMBD: "qntz.cbook.{bid}.embd",
|
||||||
|
MODEL_TENSOR.HANN_WINDOW: "hann_window",
|
||||||
}
|
}
|
||||||
|
|
||||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
@ -1372,6 +1412,31 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.OUTETTS_VOC: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_SHIFT,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_DW,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_NORM,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_SHIFT,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW1,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW2,
|
||||||
|
MODEL_TENSOR.CONV_NEXT_GAMMA,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.POS_NET_CONV1,
|
||||||
|
MODEL_TENSOR.POS_NET_CONV2,
|
||||||
|
MODEL_TENSOR.POS_NET_NORM,
|
||||||
|
MODEL_TENSOR.POS_NET_NORM1,
|
||||||
|
MODEL_TENSOR.POS_NET_NORM2,
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_NORM,
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_Q,
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_K,
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_V,
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_OUT,
|
||||||
|
MODEL_TENSOR.QNTZ_CBOOK_EMBD,
|
||||||
|
MODEL_TENSOR.HANN_WINDOW,
|
||||||
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -28,6 +28,7 @@ class TensorNameMap:
|
|||||||
"transformer.token_embeddings", # openelm
|
"transformer.token_embeddings", # openelm
|
||||||
"shared", # t5
|
"shared", # t5
|
||||||
"rwkv.embeddings", # rwkv
|
"rwkv.embeddings", # rwkv
|
||||||
|
"backbone.embed", # outetts
|
||||||
),
|
),
|
||||||
|
|
||||||
# Token type embeddings
|
# Token type embeddings
|
||||||
@ -42,6 +43,11 @@ class TensorNameMap:
|
|||||||
"emb_ln", # nomic-bert
|
"emb_ln", # nomic-bert
|
||||||
"transformer.norm", # openelm
|
"transformer.norm", # openelm
|
||||||
"rwkv.blocks.0.pre_ln", # rwkv
|
"rwkv.blocks.0.pre_ln", # rwkv
|
||||||
|
"backbone.norm.scale", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_SHIFT: (
|
||||||
|
"backbone.norm.shift", # outetts
|
||||||
),
|
),
|
||||||
|
|
||||||
# Position embeddings
|
# Position embeddings
|
||||||
@ -60,6 +66,7 @@ class TensorNameMap:
|
|||||||
"lm_head.linear", # phi2
|
"lm_head.linear", # phi2
|
||||||
"output_layer", # chatglm
|
"output_layer", # chatglm
|
||||||
"head", # rwkv
|
"head", # rwkv
|
||||||
|
"head.out", # outetts
|
||||||
),
|
),
|
||||||
|
|
||||||
# Output norm
|
# Output norm
|
||||||
@ -80,6 +87,7 @@ class TensorNameMap:
|
|||||||
"transformer.norm", # openelm
|
"transformer.norm", # openelm
|
||||||
"model.norm", # nemotron
|
"model.norm", # nemotron
|
||||||
"rwkv.ln_out", # rwkv
|
"rwkv.ln_out", # rwkv
|
||||||
|
"backbone.final_layer_norm", # outetts
|
||||||
),
|
),
|
||||||
|
|
||||||
# Rope frequencies
|
# Rope frequencies
|
||||||
@ -90,6 +98,10 @@ class TensorNameMap:
|
|||||||
|
|
||||||
MODEL_TENSOR.ROPE_FACTORS_LONG: (),
|
MODEL_TENSOR.ROPE_FACTORS_LONG: (),
|
||||||
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
|
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
|
||||||
|
|
||||||
|
MODEL_TENSOR.HANN_WINDOW: (
|
||||||
|
"head.istft.window", # outetts
|
||||||
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
@ -681,6 +693,8 @@ class TensorNameMap:
|
|||||||
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
|
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
|
||||||
),
|
),
|
||||||
|
|
||||||
|
############################################################################
|
||||||
|
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
|
||||||
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||||
"encoder.final_layer_norm", # t5
|
"encoder.final_layer_norm", # t5
|
||||||
),
|
),
|
||||||
@ -693,6 +707,75 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.CLS_OUT: (
|
MODEL_TENSOR.CLS_OUT: (
|
||||||
"classifier.out_proj", # roberta
|
"classifier.out_proj", # roberta
|
||||||
),
|
),
|
||||||
|
#############################################################################
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_DW: (
|
||||||
|
"backbone.convnext.{bid}.dwconv", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_NORM: (
|
||||||
|
"backbone.convnext.{bid}.norm.scale", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_SHIFT: (
|
||||||
|
"backbone.convnext.{bid}.norm.shift", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW1: (
|
||||||
|
"backbone.convnext.{bid}.pwconv1", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_PW2: (
|
||||||
|
"backbone.convnext.{bid}.pwconv2", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.CONV_NEXT_GAMMA: (
|
||||||
|
"backbone.convnext.{bid}.gamma", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_CONV1: (
|
||||||
|
"backbone.pos_net.{bid}.conv1", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_CONV2: (
|
||||||
|
"backbone.pos_net.{bid}.conv2", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_NORM: (
|
||||||
|
"backbone.pos_net.{bid}.norm", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_NORM1: (
|
||||||
|
"backbone.pos_net.{bid}.norm1", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_NORM2: (
|
||||||
|
"backbone.pos_net.{bid}.norm2", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_NORM: (
|
||||||
|
"backbone.pos_net.{bid}.norm", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_Q: (
|
||||||
|
"backbone.pos_net.{bid}.q", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_K: (
|
||||||
|
"backbone.pos_net.{bid}.k", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_V: (
|
||||||
|
"backbone.pos_net.{bid}.v", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.POS_NET_ATTN_OUT: (
|
||||||
|
"backbone.pos_net.{bid}.proj_out", # outetts
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.QNTZ_CBOOK_EMBD: (
|
||||||
|
"feature_extractor.encodec.quantizer.vq.layers.{bid}._codebook.embed", # outetts
|
||||||
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
# architecture-specific block mappings
|
# architecture-specific block mappings
|
||||||
|
Loading…
Reference in New Issue
Block a user