mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 09:11:46 +00:00
fixes
This commit is contained in:
parent
4ef1b017af
commit
5ea66f4354
@ -127,6 +127,8 @@ extern "C" {
|
||||
bool async;
|
||||
// pinned host buffer
|
||||
bool host_buffer;
|
||||
// creating buffers from host ptr
|
||||
bool buffer_from_host_ptr;
|
||||
// event synchronization
|
||||
bool events;
|
||||
};
|
||||
|
@ -463,6 +463,7 @@ enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
|
||||
}
|
||||
|
||||
void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
|
||||
memset(props, 0, sizeof(*props));
|
||||
device->iface.get_props(device, props);
|
||||
}
|
||||
|
||||
@ -1129,9 +1130,10 @@ static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggm
|
||||
props->type = ggml_backend_cpu_device_get_type(dev);
|
||||
ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* async */ false,
|
||||
/* host_buffer */ false,
|
||||
/* events */ false,
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -2920,9 +2920,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
#endif
|
||||
|
||||
props->caps = {
|
||||
/* async */ true,
|
||||
/* host_buffer */ host_buffer,
|
||||
/* events */ events,
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ host_buffer,
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ events,
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -3567,12 +3567,14 @@ static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
*total = g_state.mtl_device.recommendedMaxWorkingSetSize;
|
||||
id<MTLDevice> device = ggml_backend_metal_get_device();
|
||||
*total = device.recommendedMaxWorkingSetSize;
|
||||
*free = *total - device.currentAllocatedSize;
|
||||
ggml_backend_metal_free_device();
|
||||
} else {
|
||||
*free = 1;
|
||||
*total = 1;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
@ -3590,9 +3592,10 @@ static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct g
|
||||
props->type = ggml_backend_metal_device_get_type(dev);
|
||||
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = (struct ggml_backend_dev_caps) {
|
||||
/* async */ false,
|
||||
/* host_buffer */ false,
|
||||
/* events */ false,
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -8907,20 +8907,30 @@ static bool llm_load_tensors(
|
||||
llama_buf_map bufs;
|
||||
bufs.reserve(n_max_backend_buffer);
|
||||
|
||||
// check if this backend device supports buffer_from_host_ptr
|
||||
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
||||
bool buffer_from_host_ptr_supported = false;
|
||||
if (dev) {
|
||||
ggml_backend_dev_props props;
|
||||
ggml_backend_dev_get_props(dev, &props);
|
||||
buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
|
||||
}
|
||||
|
||||
if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported) {
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
// only the mmap region containing the tensors in the model is mapped to the backend buffer
|
||||
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
|
||||
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
|
||||
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) {
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
void * addr = nullptr;
|
||||
size_t first, last;
|
||||
size_t first, last; // NOLINT
|
||||
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
|
||||
if (first >= last) {
|
||||
continue;
|
||||
}
|
||||
ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx);
|
||||
ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
|
||||
if (buf == nullptr) {
|
||||
throw std::runtime_error("unable to allocate backend CPU buffer");
|
||||
throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
|
||||
}
|
||||
model.bufs.push_back(buf);
|
||||
bufs.emplace(idx, buf);
|
||||
@ -8929,7 +8939,7 @@ static bool llm_load_tensors(
|
||||
else {
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (buf == nullptr) {
|
||||
throw std::runtime_error("unable to allocate backend buffer");
|
||||
throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
|
||||
}
|
||||
model.bufs.push_back(buf);
|
||||
if (use_mlock && ggml_backend_buffer_is_host(buf)) {
|
||||
|
Loading…
Reference in New Issue
Block a user