mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
llava : fix clip-model-is-vision flag in README.md (#5509)
* llava: fix clip-model-is-vision flag in README.md This commit fixes the flag `--clip_model_is_vision` in README.md which is does not match the actual flag: ```console $ python convert-image-encoder-to-gguf.py --help ... --clip-model-is-vision The clip model is a pure vision model (ShareGPT4V vision extract for example) ``` Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * llava: update link to vit config in README.md Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
This commit is contained in:
parent
594845aab1
commit
60ed04cf82
@ -63,8 +63,8 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
|
|||||||
1) Backup your pth/safetensor model files as llava-surgery modifies them
|
1) Backup your pth/safetensor model files as llava-surgery modifies them
|
||||||
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||||
- you will find a llava.projector and a llava.clip file in your model directory
|
- you will find a llava.projector and a llava.clip file in your model directory
|
||||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config.json)
|
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
|
||||||
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip_model_is_vision`
|
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
|
||||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||||
5) Everything else as usual: convert.py the hf model, quantize as needed
|
5) Everything else as usual: convert.py the hf model, quantize as needed
|
||||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||||
|
Loading…
Reference in New Issue
Block a user