From 6102037bbb55521880ae78a6ee6c2a0c00c901df Mon Sep 17 00:00:00 2001 From: Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com> Date: Sat, 28 Sep 2024 20:10:58 +0800 Subject: [PATCH] vocab : refactor tokenizer to reduce init overhead (#9449) * refactor tokenizer * llama : make llm_tokenizer more private ggml-ci * refactor tokenizer * refactor tokenizer * llama : make llm_tokenizer more private ggml-ci * remove unused files * remove unused fileds to avoid unused filed build error * avoid symbol link error * Update src/llama.cpp * Update src/llama.cpp --------- Co-authored-by: Georgi Gerganov --- .../convert-llama2c-to-ggml.cpp | 14 +- src/llama-vocab.cpp | 266 +++++++++++------- src/llama-vocab.h | 9 + src/llama.cpp | 2 + tests/test-tokenizer-0.cpp | 88 +++--- 5 files changed, 238 insertions(+), 141 deletions(-) diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index ecff95f9a..c140daed3 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -201,7 +201,7 @@ static void print_sample_weights(TransformerWeights *w){ //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model. -struct llama_vocab { +struct my_llama_vocab { using id = int32_t; using token = std::string; using ttype = llama_token_type; @@ -525,7 +525,7 @@ static std::string llama_escape_whitespaces(const std::string & text) { return out.str(); } -static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) { +static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) { if (is_ggml_file(filename)) { LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename); struct ggml_context * ctx_data = NULL; @@ -583,13 +583,13 @@ static void load_vocab(const char * filename, const Config * config, struct llam const int n_vocab = config->vocab_size; /* uint32_t max_token_length = */ file.read_u32(); // unused vocab->id_to_token.resize(n_vocab); - for (llama_vocab::id id=0; idtoken_embedding_table -> model->tok_embeddings @@ -671,7 +671,7 @@ static void save_as_llama_model( std::vector tokens; std::vector scores; std::vector token_types; - for (const llama_vocab::token_data & token_data : vocab->id_to_token) { + for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) { tokens.push_back(token_data.text.c_str()); scores.push_back(token_data.score); token_types.push_back(token_data.type); @@ -905,7 +905,7 @@ int main(int argc, char ** argv) { fclose(file); } - struct llama_vocab vocab; + struct my_llama_vocab vocab; load_vocab(params.fn_vocab_model, &config, &vocab); struct my_llama_model model; diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 146d416f7..e4d844a73 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -50,7 +50,7 @@ struct naive_trie { res.first->second.insert(key + 1, len - 1, value); } } - std::pair get_longest_prefix(const char * key, size_t len, size_t offset = 0) { + std::pair get_longest_prefix(const char * key, size_t len, size_t offset = 0) const { if (len == 0 || offset == len) { return std::make_pair(key, offset); } @@ -79,6 +79,15 @@ struct naive_trie { // impl // +struct llm_tokenizer { + llm_tokenizer() {} + virtual ~llm_tokenizer() = default; +}; + +llama_vocab::~llama_vocab() { + delete tokenizer; +} + int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const { GGML_ASSERT(token_left.find(' ') == std::string::npos); GGML_ASSERT(token_left.find('\n') == std::string::npos); @@ -187,10 +196,15 @@ struct llm_bigram_spm { size_t size; }; -struct llm_tokenizer_spm { - llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} +struct llm_tokenizer_spm : llm_tokenizer { + llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {} +}; + +struct llm_tokenizer_spm_session { + llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { + // split string into utf8 chars int index = 0; size_t offs = 0; @@ -271,7 +285,7 @@ private: return; } - resegment(symbols[p->second.first], output); + resegment(symbols[p->second.first], output); resegment(symbols[p->second.second], output); } @@ -279,7 +293,6 @@ private: if (left == -1 || right == -1) { return; } - const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); auto token = vocab.token_to_id.find(text); @@ -306,10 +319,11 @@ private: } const llama_vocab & vocab; + // currently unused + // const llm_tokenizer_spm * spm_tokenizer; std::vector symbols; llm_bigram_spm::queue work_queue; - std::map> rev_merge; }; @@ -352,8 +366,8 @@ struct llm_bigram_bpe { size_t size; }; -struct llm_tokenizer_bpe { - llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) { +struct llm_tokenizer_bpe : llm_tokenizer { + llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() { GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); switch (vocab.type_pre) { case LLAMA_VOCAB_PRE_TYPE_LLAMA3: @@ -476,7 +490,14 @@ struct llm_tokenizer_bpe { } } - void append(const llama_vocab::id token_id, std::vector & output) const { + std::vector regex_exprs; +}; + +struct llm_tokenizer_bpe_session { + llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab), + bpe_tokenizer(static_cast(vocab.tokenizer)) {} + + static void append(const llama_vocab::id token_id, std::vector & output) { output.push_back(token_id); } @@ -515,12 +536,11 @@ struct llm_tokenizer_bpe { void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; - - const auto word_collection = unicode_regex_split(text, regex_exprs); + const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs); symbols_final.clear(); - for (auto & word : word_collection) { + for (const auto & word : word_collection) { work_queue = llm_bigram_bpe::queue(); symbols.clear(); @@ -623,7 +643,6 @@ private: if (left == -1 || right == -1) { return; } - std::string left_token = std::string(symbols[left].text, symbols[left].n); std::string right_token = std::string(symbols[right].text, symbols[right].n); @@ -647,12 +666,10 @@ private: } const llama_vocab & vocab; - - std::vector regex_exprs; + const llm_tokenizer_bpe * bpe_tokenizer; std::vector symbols; std::vector symbols_final; - llm_bigram_bpe::queue work_queue; }; @@ -660,15 +677,17 @@ private: // WPM tokenizer // -struct llm_tokenizer_wpm { - llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} +struct llm_tokenizer_wpm : llm_tokenizer { + llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {} +}; - void tokenize(const std::string & text, std::vector & output) const { +struct llm_tokenizer_wpm_session { + llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) { const auto & token_map = vocab.token_to_id; - // normalize and split by whitespace std::vector words = preprocess(text); - // bos token prepended already // find the longest tokens that form the words @@ -713,7 +732,7 @@ struct llm_tokenizer_wpm { } // TODO: reduce string copies by using cpts_offs array - std::vector preprocess(const std::string & text) const { + static std::vector preprocess(const std::string & text) { const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); std::vector words(1, ""); @@ -765,15 +784,18 @@ struct llm_tokenizer_wpm { //(cpt >= 0xFF00 && cpt <= 0xFFEF); } +private: const llama_vocab & vocab; + // currently unused + // const llm_tokenizer_wpm * wpm_tokenizer; }; // // UGM tokenizer // -struct llm_tokenizer_ugm { - llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) { +struct llm_tokenizer_ugm : llm_tokenizer { + llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() { if (vocab.precompiled_charsmap.size() > 0) { size_t charsmap_offset = 0; @@ -819,6 +841,30 @@ struct llm_tokenizer_ugm { unknown_token_score = min_score - unknown_token_score_penalty; } + // escaped space symbol - U+2581 (Lower One Eighth Block) + const std::string escaped_space = "\xE2\x96\x81"; + + const char * prefix_replacements = NULL; + size_t prefix_replacements_size = 0; + + const uint32_t * xcda_array = NULL; + size_t xcda_array_size = 0; + + struct naive_trie user_defined_token_matcher; + + float min_score = FLT_MAX; + float max_score = -FLT_MAX; + + float unknown_token_score_penalty = 10.0; + float unknown_token_score; + + struct naive_trie token_matcher; +}; + +struct llm_tokenizer_ugm_session { + llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab), + ugm_tokenizer(static_cast(vocab.tokenizer)) {} + /* This implementation is based on SentencePiece optimized Viterbi algorithm for * unigram language models. The general idea is to: * - move along the input sequence in steps of one UTF code point, @@ -857,7 +903,7 @@ struct llm_tokenizer_ugm { // traverse the token matcher trie to find a matching token bool single_codepoint_token_found = false; const struct best_tokenization & current_best = tokenization_results[input_offset]; - const struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); + const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]); while (prefix_offset <= input_len && node != NULL) { // check if we found valid token in prefix @@ -887,7 +933,7 @@ struct llm_tokenizer_ugm { // if we didn't find a valid token corresponding to the whole UTF code point // then use unknown token as the tokenization of this UTF code point if (!single_codepoint_token_found) { - const double challenger_score = current_best.score_sum + unknown_token_score; + const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score; prefix_offset = input_offset + n_utf8_code_units; struct best_tokenization & current_champ = tokenization_results[prefix_offset]; if (challenger_score > current_champ.score_sum) { @@ -919,7 +965,6 @@ struct llm_tokenizer_ugm { } private: - const llama_vocab & vocab; // helper structure for returning normalization results struct normalization_result { @@ -932,7 +977,7 @@ private: normalized->clear(); normalized->reserve(input.size() * 3); - const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " "; + const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " "; bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; @@ -1014,13 +1059,21 @@ private: size_t xcda_array_size; }; + // this structure stores the best tokenization so far at input_offset + struct best_tokenization { + llama_token token_id; + size_t input_offset; + float score_sum; + }; + struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { if (input_offset == input.size()) { return { &input[input_offset], 0, 0 }; } // if input prefix matches some user-defined token return this token as normalization result - auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); + auto user_defined_token_match = + ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); if (user_defined_token_match.second > 0) { return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; } @@ -1028,8 +1081,8 @@ private: size_t longest_prefix_length = 0; size_t longest_prefix_offset = 0; - if (xcda_array_size > 0) { - struct xcda_array_view xcda_view(xcda_array, xcda_array_size); + if (ugm_tokenizer->xcda_array_size > 0) { + struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size); // Find the longest normalized sequence matching the input prefix by walking // the XOR-compressed compact double array (XCDA) starting from the root node @@ -1065,50 +1118,27 @@ private: if (longest_prefix_length > 0) { // we have a match, so return the replacement sequence - if (longest_prefix_offset >= prefix_replacements_size) { + if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) { throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); } - const char * prefix_replacement = &prefix_replacements[longest_prefix_offset]; + const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset]; return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; - } else { - // check if the input prefix contains a valid sequence of UTF-8 code units - try { - // if yes, return this sequence unmodified - size_t prefix_offset = input_offset; - unicode_cpt_from_utf8(input, prefix_offset); - return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; - } catch (std::invalid_argument & /*ex*/) { - // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER - return { "\xEF\xBF\xBD", 3, 1 }; - } + } + + // check if the input prefix contains a valid sequence of UTF-8 code units + try { + // if yes, return this sequence unmodified + size_t prefix_offset = input_offset; + unicode_cpt_from_utf8(input, prefix_offset); + return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; + } catch (std::invalid_argument & /*ex*/) { + // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER + return { "\xEF\xBF\xBD", 3, 1 }; } } - // escaped space symbol - U+2581 (Lower One Eighth Block) - const std::string escaped_space = "\xE2\x96\x81"; - - const char * prefix_replacements = NULL; - size_t prefix_replacements_size = 0; - - const uint32_t * xcda_array = NULL; - size_t xcda_array_size = 0; - - struct naive_trie user_defined_token_matcher; - - // this structure stores the best tokenization so far at input_offset - struct best_tokenization { - llama_token token_id; - size_t input_offset; - float score_sum; - }; - - float min_score = FLT_MAX; - float max_score = -FLT_MAX; - - float unknown_token_score_penalty = 10.0; - float unknown_token_score; - - struct naive_trie token_matcher; + const llama_vocab & vocab; + const llm_tokenizer_ugm * ugm_tokenizer; }; // @@ -1169,8 +1199,8 @@ static std::vector llama_unescape_rwkv_token(const std::string & escape return output; } -struct llm_tokenizer_rwkv { - llm_tokenizer_rwkv(const llama_vocab & vocab): vocab(vocab) { +struct llm_tokenizer_rwkv : llm_tokenizer { + llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() { // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens. // For now, we decode the vocab here into the lookup we'll use for tokenization. @@ -1182,11 +1212,17 @@ struct llm_tokenizer_rwkv { } } + struct naive_trie token_matcher; +}; + +struct llm_tokenizer_rwkv_session { + llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab), + rwkv_tokenizer(static_cast(*vocab.tokenizer)) {} + void tokenize(const std::string & text, std::vector & output) { uint32_t position = 0; - while (position < text.size()) { - const struct naive_trie * node = token_matcher.traverse(text[position]); + const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]); if (node == NULL) { // no matching token found, add unknown token output.push_back(vocab.special_unk_id); @@ -1211,11 +1247,33 @@ struct llm_tokenizer_rwkv { } } +private: const llama_vocab & vocab; - - struct naive_trie token_matcher; + const llm_tokenizer_rwkv & rwkv_tokenizer; }; +void llama_vocab::init_tokenizer() { + switch (type) { + case LLAMA_VOCAB_TYPE_SPM: + tokenizer = new llm_tokenizer_spm(*this); + break; + case LLAMA_VOCAB_TYPE_BPE: + tokenizer = new llm_tokenizer_bpe(*this); + break; + case LLAMA_VOCAB_TYPE_WPM: + tokenizer = new llm_tokenizer_wpm(*this); + break; + case LLAMA_VOCAB_TYPE_UGM: + tokenizer = new llm_tokenizer_ugm(*this); + break; + case LLAMA_VOCAB_TYPE_RWKV: + tokenizer = new llm_tokenizer_rwkv(*this); + break; + default: + GGML_ABORT("unsupported vocab type"); + } +} + // // (de-) tokenize // @@ -1277,7 +1335,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< // if a fragment is text ( not yet processed ) if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto & raw_text = fragment.raw_text; + const auto & raw_text = fragment.raw_text; auto raw_text_base_offset = fragment.offset; auto raw_text_base_length = fragment.length; @@ -1376,7 +1434,13 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< } } -std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { +std::vector llama_tokenize_internal( + const llama_vocab & vocab, + std::string raw_text, + bool add_special, + bool parse_special) { + GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); + std::vector output; std::forward_list fragment_buffer; @@ -1413,9 +1477,9 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif - llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); - tokenizer.tokenize(raw_text, output); + llm_tokenizer_spm_session session(vocab); + session.tokenize(raw_text, output); is_prev_special = false; } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); @@ -1437,10 +1501,11 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, } break; case LLAMA_VOCAB_TYPE_BPE: { - llm_tokenizer_bpe tokenizer(vocab); - + llm_tokenizer_bpe_session session(vocab); + // it calls some other methods that are not exist in llm_tokenizer, + // here just cast it to bpe tokenizer object if (add_special) { - tokenizer.append_bos(output); + session.append_bos(output); } for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { @@ -1449,15 +1514,15 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif - tokenizer.tokenize(raw_text, output); + session.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - tokenizer.append(fragment.token, output); + session.append(fragment.token, output); } } if (add_special) { - tokenizer.append_eos(output); - tokenizer.check_double_bos_eos(output); + session.append_eos(output); + session.check_double_bos_eos(output); } } break; case LLAMA_VOCAB_TYPE_WPM: @@ -1467,7 +1532,7 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, output.push_back(vocab.special_cls_id); } - llm_tokenizer_wpm tokenizer(vocab); + llm_tokenizer_wpm_session session(vocab); for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { @@ -1476,7 +1541,7 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif - tokenizer.tokenize(raw_text, output); + session.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } @@ -1489,12 +1554,11 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, } break; case LLAMA_VOCAB_TYPE_UGM: { - llm_tokenizer_ugm tokenizer(vocab); - if (add_special && vocab.tokenizer_add_bos != 0) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); } + llm_tokenizer_ugm_session session(vocab); for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { @@ -1502,7 +1566,7 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif - tokenizer.tokenize(raw_text, output); + session.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } @@ -1522,6 +1586,7 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, } break; case LLAMA_VOCAB_TYPE_RWKV: { + llm_tokenizer_rwkv_session session(vocab); for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); @@ -1530,8 +1595,7 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif - llm_tokenizer_rwkv tokenizer(vocab); - tokenizer.tokenize(raw_text, output); + session.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } @@ -1644,13 +1708,13 @@ llama_token llama_token_eom_impl(const struct llama_vocab & vocab) { } int32_t llama_tokenize_impl( - const struct llama_vocab & vocab, - const char * text, - int32_t text_len, - llama_token * tokens, - int32_t n_tokens_max, - bool add_special, - bool parse_special) { + const struct llama_vocab & vocab, + const char * text, + int32_t text_len, + llama_token * tokens, + int32_t n_tokens_max, + bool add_special, + bool parse_special) { auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special); if (n_tokens_max < (int) res.size()) { // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); @@ -1775,6 +1839,8 @@ int32_t llama_detokenize_impl( int32_t text_len_max, bool remove_special, bool unparse_special) { + GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); + int32_t avail = text_len_max; int32_t total = 0; diff --git a/src/llama-vocab.h b/src/llama-vocab.h index cc46f642b..069bdc423 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -8,6 +8,8 @@ #include #include +struct llm_tokenizer; + struct llama_vocab { using id = llama_token; using token = std::string; @@ -65,7 +67,14 @@ struct llama_vocab { std::vector precompiled_charsmap; + llm_tokenizer * tokenizer = nullptr; + + llama_vocab() = default; + ~llama_vocab(); + int find_bpe_rank(const std::string & token_left, const std::string & token_right) const; + + void init_tokenizer(); }; // diff --git a/src/llama.cpp b/src/llama.cpp index f450eaf9d..44afb31d7 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -6464,6 +6464,8 @@ static void llm_load_vocab( } GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); + vocab.init_tokenizer(); + // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { // For Fill-In-the-Middle (FIM)/infill models which where converted diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp index d3d21331b..4d49850c9 100644 --- a/tests/test-tokenizer-0.cpp +++ b/tests/test-tokenizer-0.cpp @@ -7,6 +7,7 @@ #include #include #include +#include //static const std::map> & k_tests() { // static std::map> _k_tests = { @@ -194,45 +195,64 @@ int main(int argc, char **argv) { const bool add_special = false; - for (const auto & test_kv : k_tests) { - const std::vector res = llama_tokenize(ctx, test_kv.first, add_special, false); + // multi-threaded tokenization + const int nthread = std::thread::hardware_concurrency(); + std::vector threads(nthread); - printf("\n"); - printf("src: '%s'\n", test_kv.first.c_str()); - printf("res: '%s'\n", llama_detokenize(ctx, res).c_str()); - printf("tok: "); - for (const auto & tok : res) { - printf("%d ", tok); - } - printf("\n"); + for (int i = 0; i < nthread; i++) { + threads[i] = std::thread([&, i]() { + for (const auto & test_kv : k_tests) { + const std::vector res = llama_tokenize(ctx, test_kv.first, add_special, false); - bool correct = res.size() == test_kv.second.size(); - for (int i = 0; i < (int) res.size() && correct; ++i) { - if (test_kv.second[i] != res[i]) { - correct = false; + // here only print the result of the first thread + // because the other threads are running the same tests + if (i != 0) { + continue; + } + + printf("\n"); + printf("src: '%s'\n", test_kv.first.c_str()); + printf("res: '%s'\n", llama_detokenize(ctx, res).c_str()); + printf("tok: "); + for (const auto & tok : res) { + printf("%d ", tok); + } + printf("\n"); + + bool correct = res.size() == test_kv.second.size(); + for (int i = 0; i < (int) res.size() && correct; ++i) { + if (test_kv.second[i] != res[i]) { + correct = false; + } + } + + if (!correct) { + fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); + fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, + llama_detokenize(ctx, res).c_str(), + llama_detokenize(ctx, test_kv.second).c_str()); + fprintf(stderr, "%s : expected tokens: ", __func__); + for (const auto & t : test_kv.second) { + fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); + } + fprintf(stderr, "\n"); + fprintf(stderr, "%s : got tokens: ", __func__); + for (const auto & t : res) { + fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); + } + fprintf(stderr, "\n"); + + success = false; + } } - } - - if (!correct) { - fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); - fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, - llama_detokenize(ctx, res).c_str(), - llama_detokenize(ctx, test_kv.second).c_str()); - fprintf(stderr, "%s : expected tokens: ", __func__); - for (const auto & t : test_kv.second) { - fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); - } - fprintf(stderr, "\n"); - fprintf(stderr, "%s : got tokens: ", __func__); - for (const auto & t : res) { - fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); - } - fprintf(stderr, "\n"); - - success = false; - } + }); } + for (int i = 0; i < nthread; i++) { + threads[i].join(); + } + + // single threaded tokenization if (!fname_text.empty()) { fprintf(stderr, "%s : tokenizing: '%s'\n", __func__, fname_text.c_str());