mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
lookahead : initial working implementation
This commit is contained in:
parent
1b2e0bc3e6
commit
61d039727a
@ -7,7 +7,11 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
struct seq_ngram {
|
struct seq_ngram {
|
||||||
bool active = false;
|
bool active = false;
|
||||||
|
|
||||||
|
llama_seq_id seq_id = -1;
|
||||||
|
|
||||||
|
std::vector<int> i_batch;
|
||||||
|
|
||||||
std::vector<llama_token> tokens;
|
std::vector<llama_token> tokens;
|
||||||
};
|
};
|
||||||
@ -34,9 +38,9 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int W = 5; // lookahead window
|
const int W = 10; // lookahead window
|
||||||
const int N = 4; // n-gram size
|
const int N = 8; // n-gram size
|
||||||
const int G = 5; // max verification n-grams
|
const int G = 10; // max verification n-grams
|
||||||
|
|
||||||
const bool dump_kv_cache = params.dump_kv_cache;
|
const bool dump_kv_cache = params.dump_kv_cache;
|
||||||
|
|
||||||
@ -89,7 +93,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
||||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
||||||
|
|
||||||
for (int s = 0; s < W + G + 1; ++s) {
|
for (int s = 1; s < W + G + 1; ++s) {
|
||||||
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -114,15 +118,18 @@ int main(int argc, char ** argv) {
|
|||||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
||||||
|
|
||||||
// verification n-grams
|
// verification n-grams
|
||||||
std::vector<seq_ngram> ngrams(G);
|
std::vector<seq_ngram> ngrams_cur(G);
|
||||||
|
|
||||||
// tokens for the past N - 1 Jacobi iterations
|
// tokens for the past N - 1 Jacobi iterations
|
||||||
std::vector<llama_token> tokens_j_prev(W);
|
std::vector<llama_token> tokens_j_prev(W);
|
||||||
std::vector<std::vector<llama_token>> tokens_j(N - 1);
|
std::vector<std::vector<llama_token>> tokens_j(N - 1);
|
||||||
for (int j = 0; j < N - 1; j++) {
|
for (int j = 0; j < N - 1; j++) {
|
||||||
tokens_j[j].resize(W);
|
tokens_j[j].resize(W);
|
||||||
|
|
||||||
for (int i = 0; i < W; i++) {
|
for (int i = 0; i < W; i++) {
|
||||||
tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
|
// initialize randomly from the prompt tokens
|
||||||
|
//tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
|
||||||
|
tokens_j[j][i] = 100 + i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -168,113 +175,202 @@ int main(int argc, char ** argv) {
|
|||||||
{
|
{
|
||||||
llama_batch_clear(batch);
|
llama_batch_clear(batch);
|
||||||
|
|
||||||
|
// current token - first token of the first level
|
||||||
llama_batch_add(batch, id, n_past, seq_id_all, true);
|
llama_batch_add(batch, id, n_past, seq_id_all, true);
|
||||||
|
|
||||||
|
// verification n-grams - queue this here for less KV cache fragmentation
|
||||||
|
{
|
||||||
|
const int g_cur = ngrams_observed.cnt[id];
|
||||||
|
|
||||||
|
ngrams_cur.resize(g_cur);
|
||||||
|
for (int g = 0; g < g_cur; g++) {
|
||||||
|
ngrams_cur[g].active = true;
|
||||||
|
ngrams_cur[g].tokens.resize(N);
|
||||||
|
ngrams_cur[g].i_batch.resize(N);
|
||||||
|
ngrams_cur[g].seq_id = W + 1 + g;
|
||||||
|
ngrams_cur[g].i_batch[0] = 0;
|
||||||
|
ngrams_cur[g].tokens [0] = id;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int j = 0; j < N - 1; j++) {
|
||||||
|
for (int g = 0; g < g_cur; g++) {
|
||||||
|
const int idx = id*(N - 1)*G + g*(N - 1);
|
||||||
|
|
||||||
|
const llama_token t = ngrams_observed.tokens[idx + j];
|
||||||
|
|
||||||
|
ngrams_cur[g].tokens [j + 1] = t;
|
||||||
|
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
|
||||||
|
|
||||||
|
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// fill the remaining W - 1 tokens for the first level
|
||||||
for (int i = 1; i < W; i++) {
|
for (int i = 1; i < W; i++) {
|
||||||
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// fill the rest of the levels
|
||||||
for (int j = 1; j < N - 1; j++) {
|
for (int j = 1; j < N - 1; j++) {
|
||||||
for (int i = 0; i < W; i++) {
|
for (int i = 0; i < W; i++) {
|
||||||
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: add verification n-grams
|
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_decode(ctx, batch);
|
if (llama_decode(ctx, batch) != 0) {
|
||||||
|
fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
|
||||||
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
|
return 1;
|
||||||
|
|
||||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
|
||||||
|
|
||||||
{
|
|
||||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
||||||
|
|
||||||
printf("%s", token_str.c_str());
|
|
||||||
fflush(stdout);
|
|
||||||
|
|
||||||
if (id == llama_token_eos(model)) {
|
|
||||||
has_eos = true;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
++n_predict;
|
int seq_id_best = 0;
|
||||||
++n_past;
|
|
||||||
|
|
||||||
if (n_predict > params.n_predict || has_eos) {
|
for (int v = 0; v < N; ++v) {
|
||||||
break;
|
int i_batch = 0;
|
||||||
}
|
|
||||||
|
|
||||||
// print known n-grams starting with token id
|
if (v > 0) {
|
||||||
if (1) {
|
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
|
||||||
if (ngrams_observed.cnt[id] > 0) {
|
if (ngrams_cur[g].active) {
|
||||||
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
i_batch = ngrams_cur[g].i_batch[v];
|
||||||
|
seq_id_best = ngrams_cur[g].seq_id;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// no more matches
|
||||||
|
if (i_batch == 0) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
|
||||||
printf(" - ngram %2d: ", i);
|
|
||||||
|
|
||||||
const int idx = id*(N - 1)*G + i*(N - 1);
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||||
|
|
||||||
for (int j = 0; j < N - 1; j++) {
|
{
|
||||||
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
|
||||||
|
if (v == 0) {
|
||||||
printf("%s", token_str.c_str());
|
printf("%s", token_str.c_str());
|
||||||
|
} else {
|
||||||
|
// print light cyan
|
||||||
|
printf("\033[0;96m%s\033[0m", token_str.c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
|
||||||
|
if (id == llama_token_eos(model)) {
|
||||||
|
has_eos = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("\n");
|
all.push_back(id);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// update Jacobi tokens (or whatever these are called)
|
|
||||||
{
|
|
||||||
for (int i = 0; i < W; i++) {
|
|
||||||
tokens_j_prev[i] = tokens_j[0][i];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int j = 0; j < N - 2; j++) {
|
++n_predict;
|
||||||
tokens_j[j] = tokens_j[j + 1];
|
++n_past;
|
||||||
|
|
||||||
|
if (n_predict > params.n_predict || has_eos) {
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < W; i++) {
|
// verify across active n-grams
|
||||||
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, W*(N - 2) + i);
|
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
|
||||||
|
if (ngrams_cur[g].active) {
|
||||||
|
if (v == N - 1) {
|
||||||
|
ngrams_cur[g].active = false;
|
||||||
|
} else {
|
||||||
|
if (id != ngrams_cur[g].tokens[v + 1]) {
|
||||||
|
ngrams_cur[g].active = false;
|
||||||
|
} else {
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// update observed ngrams
|
// print known n-grams starting with token id
|
||||||
{
|
if (0) {
|
||||||
// the first token of the n-gram is determined by the index in the container so it is not stored
|
if (ngrams_observed.cnt[id] > 0) {
|
||||||
std::vector<llama_token> ngram(N - 1);
|
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
||||||
|
|
||||||
// n-gram generation
|
|
||||||
for (int f = 0; f < W; ++f) {
|
|
||||||
for (int j = 0; j < N - 1; ++j) {
|
|
||||||
ngram[j] = tokens_j[j][f];
|
|
||||||
};
|
|
||||||
|
|
||||||
const int ft = tokens_j_prev[f]; // first token of the n-gram
|
|
||||||
const int head = ngrams_observed.head[ft];
|
|
||||||
const int idx = ft*(N - 1)*G + head*(N - 1);
|
|
||||||
|
|
||||||
for (int i = 0; i < N - 1; i++) {
|
|
||||||
ngrams_observed.tokens[idx + i] = ngram[i];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
|
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
||||||
ngrams_observed.head[ft] = (head + 1) % G;
|
printf(" - ngram %2d: ", i);
|
||||||
|
|
||||||
ngrams_observed.n_total++;
|
const int idx = id*(N - 1)*G + i*(N - 1);
|
||||||
|
|
||||||
|
for (int j = 0; j < N - 1; j++) {
|
||||||
|
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||||
|
|
||||||
|
printf("%s", token_str.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// verification
|
// update Jacobi tokens (or whatever these are called)
|
||||||
// TODO
|
{
|
||||||
{
|
for (int i = 0; i < W; i++) {
|
||||||
|
tokens_j_prev[i] = tokens_j[0][i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int j = 0; j < N - 2; j++) {
|
||||||
|
tokens_j[j] = tokens_j[j + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
if (v == 0) {
|
||||||
|
// sample from the last level
|
||||||
|
for (int i = 0; i < W; i++) {
|
||||||
|
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < W; i++) {
|
||||||
|
// random init
|
||||||
|
//tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
|
||||||
|
tokens_j[N - 2][i] = tokens_j[0][i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// update observed ngrams
|
||||||
|
{
|
||||||
|
// the first token of the n-gram is determined by the index in the container so it is not stored
|
||||||
|
std::vector<llama_token> ngram(N - 1);
|
||||||
|
|
||||||
|
// n-gram generation
|
||||||
|
// ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
|
||||||
|
for (int f = 0; f < W; ++f) {
|
||||||
|
for (int j = 0; j < N - 1; ++j) {
|
||||||
|
ngram[j] = tokens_j[j][f];
|
||||||
|
};
|
||||||
|
|
||||||
|
const int ft = tokens_j_prev[f]; // first token of the n-gram
|
||||||
|
const int head = ngrams_observed.head[ft];
|
||||||
|
const int idx = ft*(N - 1)*G + head*(N - 1);
|
||||||
|
|
||||||
|
for (int i = 0; i < N - 1; i++) {
|
||||||
|
ngrams_observed.tokens[idx + i] = ngram[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
|
||||||
|
ngrams_observed.head[ft] = (head + 1) % G;
|
||||||
|
|
||||||
|
ngrams_observed.n_total++;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
|
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
|
||||||
|
|
||||||
|
if (seq_id_best != 0) {
|
||||||
|
llama_kv_cache_seq_keep(ctx, seq_id_best);
|
||||||
|
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
|
||||||
|
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
|
||||||
|
|
||||||
|
for (int s = 1; s < W + G + 1; ++s) {
|
||||||
|
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
auto t_dec_end = ggml_time_us();
|
auto t_dec_end = ggml_time_us();
|
||||||
|
Loading…
Reference in New Issue
Block a user