mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
server: benchmark: chat/completions scenario and other llm servers comparison (#5941)
* server: bench: Init a bench scenario with K6 See #5827 * server: bench: EOL EOF * server: bench: PR feedback and improved k6 script configuration * server: bench: remove llamacpp_completions_tokens_seconds as it include prompt processing time and it's misleading server: bench: add max_tokens from SERVER_BENCH_MAX_TOKENS server: bench: increase truncated rate to 80% before failing * server: bench: fix doc * server: bench: change gauge custom metrics to trend * server: bench: change gauge custom metrics to trend server: bench: add trend custom metrics for total tokens per second average * server: bench: doc add an option to debug http request * server: bench: filter dataset too short and too long sequences * server: bench: allow to filter out conversation in the dataset based on env variable * server: bench: fix assistant message sent instead of user message * server: bench: fix assistant message sent instead of user message * server : add defrag thold parameter * server: bench: select prompts based on the current iteration id not randomly to make the bench more reproducible --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
77d1ac7e00
commit
621e86b331
88
examples/server/bench/README.md
Normal file
88
examples/server/bench/README.md
Normal file
@ -0,0 +1,88 @@
|
||||
### Server benchmark tools
|
||||
|
||||
Benchmark is using [k6](https://k6.io/).
|
||||
|
||||
##### Install k6
|
||||
|
||||
Follow instruction from: https://k6.io/docs/get-started/installation/
|
||||
|
||||
Example for ubuntu:
|
||||
```shell
|
||||
snap install k6
|
||||
```
|
||||
|
||||
#### Download a dataset
|
||||
|
||||
This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
|
||||
|
||||
```shell
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
```
|
||||
|
||||
#### Download a model
|
||||
Example for PHI-2
|
||||
|
||||
```shell
|
||||
../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf
|
||||
```
|
||||
|
||||
#### Start the server
|
||||
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
|
||||
|
||||
Example:
|
||||
```shell
|
||||
server --host localhost --port 8080 \
|
||||
--model ggml-model-q4_0.gguf \
|
||||
--cont-batching \
|
||||
--metrics \
|
||||
--parallel 8 \
|
||||
--batch-size 512 \
|
||||
--ctx-size 4096 \
|
||||
--log-format text \
|
||||
-ngl 33
|
||||
```
|
||||
|
||||
#### Run the benchmark
|
||||
|
||||
For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
|
||||
```shell
|
||||
k6 run script.js --duration 10m --iterations 500 --vus 8
|
||||
```
|
||||
|
||||
The benchmark values can be overridden with:
|
||||
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
|
||||
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
|
||||
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
|
||||
- `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512`
|
||||
- `SERVER_BENCH_DATASET` path to the benchmark dataset file
|
||||
- `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024`
|
||||
- `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048`
|
||||
|
||||
Note: the local tokenizer is just a string space split, real number of tokens will differ.
|
||||
|
||||
Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
|
||||
|
||||
```shell
|
||||
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
|
||||
```
|
||||
|
||||
To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`.
|
||||
|
||||
#### Metrics
|
||||
|
||||
Following metrics are available computed from the OAI chat completions response `usage`:
|
||||
- `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration`
|
||||
- `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens`
|
||||
- `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens`
|
||||
- `llamacpp_completion_tokens` Trend of `usage.completion_tokens`
|
||||
- `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens`
|
||||
- `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'`
|
||||
- `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'`
|
||||
|
||||
The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`.
|
||||
|
||||
K6 metrics might be compared against [server metrics](../README.md), with:
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/metrics
|
||||
```
|
120
examples/server/bench/script.js
Normal file
120
examples/server/bench/script.js
Normal file
@ -0,0 +1,120 @@
|
||||
import http from 'k6/http'
|
||||
import {check, sleep} from 'k6'
|
||||
import {SharedArray} from 'k6/data'
|
||||
import {Counter, Rate, Trend} from 'k6/metrics'
|
||||
import exec from 'k6/execution';
|
||||
|
||||
// Server chat completions prefix
|
||||
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
|
||||
|
||||
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
|
||||
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
|
||||
|
||||
// Model name to request
|
||||
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
|
||||
|
||||
// Dataset path
|
||||
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
|
||||
|
||||
// Max tokens to predict
|
||||
const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512
|
||||
|
||||
// Max prompt tokens
|
||||
const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024
|
||||
|
||||
// Max slot context
|
||||
const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048
|
||||
|
||||
export function setup() {
|
||||
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
|
||||
}
|
||||
|
||||
const data = new SharedArray('conversations', function () {
|
||||
const tokenizer = (message) => message.split(/[\s,'".?]/)
|
||||
|
||||
return JSON.parse(open(dataset_path))
|
||||
// Filter out the conversations with less than 2 turns.
|
||||
.filter(data => data["conversations"].length >= 2)
|
||||
.filter(data => data["conversations"][0]["from"] === "human")
|
||||
.map(data => {
|
||||
return {
|
||||
prompt: data["conversations"][0]["value"],
|
||||
n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
|
||||
n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
|
||||
}
|
||||
})
|
||||
// Filter out too short sequences
|
||||
.filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
|
||||
// Filter out too long sequences.
|
||||
.filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
|
||||
// Keep only first n prompts
|
||||
.slice(0, n_prompt)
|
||||
})
|
||||
|
||||
const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
|
||||
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
|
||||
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
|
||||
|
||||
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
|
||||
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
|
||||
|
||||
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
|
||||
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
|
||||
|
||||
export const options = {
|
||||
thresholds: {
|
||||
llamacpp_completions_truncated_rate: [
|
||||
// more than 80% of truncated input will abort the test
|
||||
{threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
|
||||
],
|
||||
},
|
||||
duration: '10m',
|
||||
vus: 8,
|
||||
}
|
||||
|
||||
export default function () {
|
||||
const conversation = data[exec.scenario.iterationInInstance % data.length]
|
||||
const payload = {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are ChatGPT, an AI assistant.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": conversation.prompt,
|
||||
}
|
||||
],
|
||||
"model": model,
|
||||
"stream": false,
|
||||
"max_tokens": max_tokens
|
||||
}
|
||||
|
||||
const body = JSON.stringify(payload)
|
||||
|
||||
let res = http.post(`${server_url}/chat/completions`, body, {
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
timeout: '300s'
|
||||
})
|
||||
|
||||
check(res, {'success completion': (r) => r.status === 200})
|
||||
|
||||
if (res.status === 200) {
|
||||
const completions = res.json()
|
||||
|
||||
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
|
||||
llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)
|
||||
|
||||
llamacpp_completion_tokens.add(completions.usage.completion_tokens)
|
||||
llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)
|
||||
|
||||
llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
|
||||
llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')
|
||||
|
||||
llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
|
||||
} else {
|
||||
console.error(`response: ${res.body} request=${payload}`)
|
||||
}
|
||||
|
||||
sleep(0.3)
|
||||
}
|
@ -2133,6 +2133,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
|
||||
printf(" -dt N, --defrag-thold N\n");
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
@ -2355,6 +2357,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
|
||||
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
|
||||
else { invalid_param = true; break; }
|
||||
} else if (arg == "--defrag-thold" || arg == "-dt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.defrag_thold = std::stof(argv[i]);
|
||||
} else if (arg == "--threads" || arg == "-t") {
|
||||
if (++i >= argc)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user