mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
llama : rename missed batch params/vars to ubatch (#10059)
This commit renames the `batch` parameter to `ubatch` in the
`llama_kv_cache_find_slot`, `llm_build_inp_embd`, and
`llm_build_mamba` functions.
The motivation for this is that this should have been done as part of
Commit 19d900a756
("llama : rename batch
to ubatch (#9950)") but for some reason I missed these functions in
that commit and only noticed them now (sorry).
This commit is contained in:
parent
47182dd03f
commit
6369f867a4
@ -119,10 +119,10 @@ bool llama_kv_cache_init(
|
|||||||
|
|
||||||
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
||||||
struct llama_kv_cache & cache,
|
struct llama_kv_cache & cache,
|
||||||
const struct llama_ubatch & batch) {
|
const struct llama_ubatch & ubatch) {
|
||||||
const uint32_t n_tokens = batch.n_tokens;
|
const uint32_t n_tokens = ubatch.n_tokens;
|
||||||
const uint32_t n_seqs = batch.n_seqs;
|
const uint32_t n_seqs = ubatch.n_seqs;
|
||||||
const uint32_t n_seq_tokens = batch.n_seq_tokens;
|
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||||
|
|
||||||
if (cache.recurrent) {
|
if (cache.recurrent) {
|
||||||
// For recurrent state architectures (like Mamba or RWKV),
|
// For recurrent state architectures (like Mamba or RWKV),
|
||||||
@ -130,16 +130,16 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
// A slot should be always be contiguous.
|
// A slot should be always be contiguous.
|
||||||
|
|
||||||
// can only process batches with an equal number of new tokens in each sequence
|
// can only process batches with an equal number of new tokens in each sequence
|
||||||
GGML_ASSERT(batch.equal_seqs);
|
GGML_ASSERT(ubatch.equal_seqs);
|
||||||
|
|
||||||
int32_t min = cache.size - 1;
|
int32_t min = cache.size - 1;
|
||||||
int32_t max = 0;
|
int32_t max = 0;
|
||||||
|
|
||||||
// everything should fit if all seq_ids are smaller than the max
|
// everything should fit if all seq_ids are smaller than the max
|
||||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||||
const uint32_t n_seq_id = batch.n_seq_id[s];
|
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
||||||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||||
|
|
||||||
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
||||||
// too big seq_id
|
// too big seq_id
|
||||||
@ -198,7 +198,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
|
|
||||||
// find usable cell range
|
// find usable cell range
|
||||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||||||
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
||||||
bool has_cell = false;
|
bool has_cell = false;
|
||||||
if (seq_meta.tail >= 0) {
|
if (seq_meta.tail >= 0) {
|
||||||
@ -237,7 +237,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
// gather and re-order
|
// gather and re-order
|
||||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||||
int32_t dst_id = s + min;
|
int32_t dst_id = s + min;
|
||||||
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
|
int32_t src_id = cache.cells[ubatch.seq_id[s][0]].tail;
|
||||||
if (dst_id != src_id) {
|
if (dst_id != src_id) {
|
||||||
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
||||||
llama_kv_cell & src_cell = cache.cells[src_id];
|
llama_kv_cell & src_cell = cache.cells[src_id];
|
||||||
@ -258,7 +258,7 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
|
|
||||||
// update the pos of the used seqs
|
// update the pos of the used seqs
|
||||||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||||||
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||||||
int32_t cell_id = s + min;
|
int32_t cell_id = s + min;
|
||||||
llama_kv_cell & cell = cache.cells[cell_id];
|
llama_kv_cell & cell = cache.cells[cell_id];
|
||||||
|
|
||||||
@ -266,12 +266,12 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
// What should happen when the pos backtracks or skips a value?
|
// What should happen when the pos backtracks or skips a value?
|
||||||
// Clearing the state mid-batch would require special-casing which isn't done.
|
// Clearing the state mid-batch would require special-casing which isn't done.
|
||||||
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
||||||
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
|
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
||||||
}
|
}
|
||||||
cell.pos = last_pos;
|
cell.pos = last_pos;
|
||||||
cell.seq_id.clear();
|
cell.seq_id.clear();
|
||||||
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
|
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
||||||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
||||||
cell.seq_id.insert(seq_id);
|
cell.seq_id.insert(seq_id);
|
||||||
cache.cells[seq_id].tail = cell_id;
|
cache.cells[seq_id].tail = cell_id;
|
||||||
}
|
}
|
||||||
@ -325,10 +325,10 @@ struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
|
|||||||
for (uint32_t s = 0; s < n_seqs; s++) {
|
for (uint32_t s = 0; s < n_seqs; s++) {
|
||||||
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
||||||
uint32_t k = s*n_seq_tokens + i;
|
uint32_t k = s*n_seq_tokens + i;
|
||||||
cache.cells[cache.head + k].pos = batch.pos[k];
|
cache.cells[cache.head + k].pos = ubatch.pos[k];
|
||||||
|
|
||||||
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
|
for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
|
||||||
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
|
cache.cells[cache.head + k].seq_id.insert(ubatch.seq_id[s][j]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -2540,21 +2540,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct llama_context & lctx,
|
struct llama_context & lctx,
|
||||||
const llama_hparams & hparams,
|
const llama_hparams & hparams,
|
||||||
const llama_ubatch & batch,
|
const llama_ubatch & ubatch,
|
||||||
struct ggml_tensor * tok_embd,
|
struct ggml_tensor * tok_embd,
|
||||||
const llm_build_cb & cb) {
|
const llm_build_cb & cb) {
|
||||||
const int64_t n_embd = hparams.n_embd;
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
|
||||||
struct ggml_tensor * inpL;
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
if (batch.token) {
|
if (ubatch.token) {
|
||||||
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
|
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ubatch.n_tokens);
|
||||||
cb(lctx.inp_tokens, "inp_tokens", -1);
|
cb(lctx.inp_tokens, "inp_tokens", -1);
|
||||||
ggml_set_input(lctx.inp_tokens);
|
ggml_set_input(lctx.inp_tokens);
|
||||||
|
|
||||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||||
} else {
|
} else {
|
||||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
||||||
inpL = lctx.inp_embd;
|
inpL = lctx.inp_embd;
|
||||||
ggml_set_input(lctx.inp_embd);
|
ggml_set_input(lctx.inp_embd);
|
||||||
}
|
}
|
||||||
@ -3149,7 +3149,7 @@ static struct ggml_tensor * llm_build_copy_mask_state(
|
|||||||
static struct ggml_tensor * llm_build_mamba(
|
static struct ggml_tensor * llm_build_mamba(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct llama_context & lctx,
|
struct llama_context & lctx,
|
||||||
const llama_ubatch & batch,
|
const llama_ubatch & ubatch,
|
||||||
struct ggml_cgraph * graph,
|
struct ggml_cgraph * graph,
|
||||||
struct ggml_tensor * cur,
|
struct ggml_tensor * cur,
|
||||||
struct ggml_tensor * state_copy,
|
struct ggml_tensor * state_copy,
|
||||||
@ -3165,17 +3165,17 @@ static struct ggml_tensor * llm_build_mamba(
|
|||||||
const int64_t d_inner = hparams.ssm_d_inner;
|
const int64_t d_inner = hparams.ssm_d_inner;
|
||||||
const int64_t d_state = hparams.ssm_d_state;
|
const int64_t d_state = hparams.ssm_d_state;
|
||||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||||
const int64_t n_seqs = batch.n_seqs;
|
const int64_t n_seqs = ubatch.n_seqs;
|
||||||
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
||||||
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
||||||
// Use the same RMS norm as the final layer norm
|
// Use the same RMS norm as the final layer norm
|
||||||
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
||||||
|
|
||||||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||||
|
|
||||||
GGML_ASSERT(n_seqs != 0);
|
GGML_ASSERT(n_seqs != 0);
|
||||||
GGML_ASSERT(batch.equal_seqs);
|
GGML_ASSERT(ubatch.equal_seqs);
|
||||||
GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
|
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||||
|
|
||||||
struct ggml_tensor * conv_states_all = kv.k_l[il];
|
struct ggml_tensor * conv_states_all = kv.k_l[il];
|
||||||
struct ggml_tensor * ssm_states_all = kv.v_l[il];
|
struct ggml_tensor * ssm_states_all = kv.v_l[il];
|
||||||
|
Loading…
Reference in New Issue
Block a user