mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
llama : add enum for built-in chat templates (#10623)
* llama : add enum for supported chat templates * use "built-in" instead of "supported" * arg: print list of built-in templates * fix test * update server README
This commit is contained in:
parent
8648c52101
commit
642330ac7c
@ -348,6 +348,18 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static std::string list_builtin_chat_templates() {
|
||||||
|
std::vector<const char *> supported_tmpl;
|
||||||
|
int32_t res = llama_chat_builtin_templates(nullptr, 0);
|
||||||
|
supported_tmpl.resize(res);
|
||||||
|
res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
|
||||||
|
std::ostringstream msg;
|
||||||
|
for (auto & tmpl : supported_tmpl) {
|
||||||
|
msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
|
||||||
|
}
|
||||||
|
return msg.str();
|
||||||
|
}
|
||||||
|
|
||||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||||
// load dynamic backends
|
// load dynamic backends
|
||||||
ggml_backend_load_all();
|
ggml_backend_load_all();
|
||||||
@ -1814,9 +1826,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||||
add_opt(common_arg(
|
add_opt(common_arg(
|
||||||
{"--chat-template"}, "JINJA_TEMPLATE",
|
{"--chat-template"}, "JINJA_TEMPLATE",
|
||||||
|
string_format(
|
||||||
"set custom jinja chat template (default: template taken from model's metadata)\n"
|
"set custom jinja chat template (default: template taken from model's metadata)\n"
|
||||||
"if suffix/prefix are specified, template will be disabled\n"
|
"if suffix/prefix are specified, template will be disabled\n"
|
||||||
"only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
|
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
|
||||||
|
),
|
||||||
[](common_params & params, const std::string & value) {
|
[](common_params & params, const std::string & value) {
|
||||||
if (!common_chat_verify_template(value)) {
|
if (!common_chat_verify_template(value)) {
|
||||||
throw std::runtime_error(string_format(
|
throw std::runtime_error(string_format(
|
||||||
|
@ -69,6 +69,8 @@ The project is under active development, and we are [looking for feedback and co
|
|||||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
||||||
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
|
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
|
||||||
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
|
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
|
||||||
|
| `-dev, --device <dev1,dev2,..>` | comma-separated list of devices to use for offloading (none = don't offload)<br/>use --list-devices to see a list of available devices<br/>(env: LLAMA_ARG_DEVICE) |
|
||||||
|
| `--list-devices` | print list of available devices and exit |
|
||||||
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
|
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
|
||||||
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs<br/>(env: LLAMA_ARG_SPLIT_MODE) |
|
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs<br/>(env: LLAMA_ARG_SPLIT_MODE) |
|
||||||
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1<br/>(env: LLAMA_ARG_TENSOR_SPLIT) |
|
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1<br/>(env: LLAMA_ARG_TENSOR_SPLIT) |
|
||||||
@ -158,9 +160,16 @@ The project is under active development, and we are [looking for feedback and co
|
|||||||
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
|
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
|
||||||
| `--no-slots` | disables slots monitoring endpoint<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
| `--no-slots` | disables slots monitoring endpoint<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
||||||
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
|
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
|
||||||
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted:<br/>https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
|
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>list of built-in templates:<br/>chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, exaone3, gemma, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, monarch, openchat, orion, phi3, rwkv-world, vicuna, vicuna-orca, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
|
||||||
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
|
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
|
||||||
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
|
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
|
||||||
|
| `--draft-max, --draft, --draft-n N` | number of tokens to draft for speculative decoding (default: 16) |
|
||||||
|
| `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 5) |
|
||||||
|
| `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.9) |
|
||||||
|
| `-cd, --ctx-size-draft N` | size of the prompt context for the draft model (default: 0, 0 = loaded from model) |
|
||||||
|
| `-devd, --device-draft <dev1,dev2,..>` | comma-separated list of devices to use for offloading the draft model (none = don't offload)<br/>use --list-devices to see a list of available devices |
|
||||||
|
| `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model |
|
||||||
|
| `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused) |
|
||||||
|
|
||||||
|
|
||||||
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
|
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
|
||||||
|
@ -990,6 +990,9 @@ extern "C" {
|
|||||||
char * buf,
|
char * buf,
|
||||||
int32_t length);
|
int32_t length);
|
||||||
|
|
||||||
|
// Get list of built-in chat templates
|
||||||
|
int32_t llama_chat_builtin_templates(const char ** output, size_t len);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Sampling API
|
// Sampling API
|
||||||
//
|
//
|
||||||
|
247
src/llama.cpp
247
src/llama.cpp
@ -1549,6 +1549,67 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
enum llm_chat_template {
|
||||||
|
LLM_CHAT_TEMPLATE_CHATML,
|
||||||
|
LLM_CHAT_TEMPLATE_LLAMA_2,
|
||||||
|
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
|
||||||
|
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
|
||||||
|
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
|
||||||
|
LLM_CHAT_TEMPLATE_MISTRAL_V1,
|
||||||
|
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||||
|
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||||
|
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||||
|
LLM_CHAT_TEMPLATE_PHI_3,
|
||||||
|
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||||
|
LLM_CHAT_TEMPLATE_MONARCH,
|
||||||
|
LLM_CHAT_TEMPLATE_GEMMA,
|
||||||
|
LLM_CHAT_TEMPLATE_ORION,
|
||||||
|
LLM_CHAT_TEMPLATE_OPENCHAT,
|
||||||
|
LLM_CHAT_TEMPLATE_VICUNA,
|
||||||
|
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
|
||||||
|
LLM_CHAT_TEMPLATE_DEEPSEEK,
|
||||||
|
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
|
||||||
|
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||||
|
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||||
|
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||||
|
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||||
|
LLM_CHAT_TEMPLATE_MINICPM,
|
||||||
|
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||||
|
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||||
|
LLM_CHAT_TEMPLATE_GRANITE,
|
||||||
|
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||||
|
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
|
||||||
|
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
|
||||||
|
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
|
||||||
|
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
|
||||||
|
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
|
||||||
|
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
|
||||||
|
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||||
|
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||||
|
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||||
|
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||||
|
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||||
|
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||||
|
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||||
|
{ "orion", LLM_CHAT_TEMPLATE_ORION },
|
||||||
|
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
|
||||||
|
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
|
||||||
|
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
|
||||||
|
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
|
||||||
|
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
|
||||||
|
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||||
|
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||||
|
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||||
|
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||||
|
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||||
|
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||||
|
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||||
|
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||||
|
};
|
||||||
|
|
||||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||||
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
|
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
|
||||||
if (kv.second == name) {
|
if (kv.second == name) {
|
||||||
@ -21843,18 +21904,109 @@ int32_t llama_detokenize(
|
|||||||
// chat templates
|
// chat templates
|
||||||
//
|
//
|
||||||
|
|
||||||
|
static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
|
||||||
|
if (LLM_CHAT_TEMPLATES.find(tmpl) != LLM_CHAT_TEMPLATES.end()) {
|
||||||
|
return LLM_CHAT_TEMPLATES.at(tmpl);
|
||||||
|
}
|
||||||
|
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
|
||||||
|
return tmpl.find(haystack) != std::string::npos;
|
||||||
|
};
|
||||||
|
if (tmpl_contains("<|im_start|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_CHATML;
|
||||||
|
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||||
|
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||||
|
} else if (
|
||||||
|
// catches official 'v1' template
|
||||||
|
tmpl_contains("' [INST] ' + system_message")
|
||||||
|
// catches official 'v3' and 'v3-tekken' templates
|
||||||
|
|| tmpl_contains("[AVAILABLE_TOOLS]")
|
||||||
|
) {
|
||||||
|
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
||||||
|
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||||
|
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||||
|
if (tmpl_contains(" [INST]")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
|
||||||
|
} else if (tmpl_contains("\"[INST]\"")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
|
||||||
|
}
|
||||||
|
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||||
|
} else {
|
||||||
|
// llama2 template and its variants
|
||||||
|
// [variant] support system message
|
||||||
|
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||||
|
bool support_system_message = tmpl_contains("<<SYS>>");
|
||||||
|
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||||
|
bool strip_message = tmpl_contains("content.strip()");
|
||||||
|
if (strip_message) {
|
||||||
|
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||||
|
} else if (add_bos_inside_history) {
|
||||||
|
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||||
|
} else if (support_system_message) {
|
||||||
|
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
|
||||||
|
} else {
|
||||||
|
return LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||||
|
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||||
|
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_MONARCH;
|
||||||
|
} else if (tmpl_contains("<start_of_turn>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_GEMMA;
|
||||||
|
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||||
|
// OrionStarAI/Orion-14B-Chat
|
||||||
|
return LLM_CHAT_TEMPLATE_ORION;
|
||||||
|
} else if (tmpl_contains("GPT4 Correct ")) {
|
||||||
|
// openchat/openchat-3.5-0106
|
||||||
|
return LLM_CHAT_TEMPLATE_OPENCHAT;
|
||||||
|
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
|
||||||
|
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||||
|
if (tmpl_contains("SYSTEM: ")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
|
||||||
|
}
|
||||||
|
return LLM_CHAT_TEMPLATE_VICUNA;
|
||||||
|
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
|
||||||
|
// deepseek-ai/deepseek-coder-33b-instruct
|
||||||
|
return LLM_CHAT_TEMPLATE_DEEPSEEK;
|
||||||
|
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
|
||||||
|
// CohereForAI/c4ai-command-r-plus
|
||||||
|
return LLM_CHAT_TEMPLATE_COMMAND_R;
|
||||||
|
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||||
|
} else if (tmpl_contains("[gMASK]sop")) {
|
||||||
|
// chatglm3-6b
|
||||||
|
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||||
|
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||||
|
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||||
|
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||||
|
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||||
|
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||||
|
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||||
|
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||||
|
// EXAONE-3.0-7.8B-Instruct
|
||||||
|
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||||
|
} else if (tmpl_contains("rwkv-world")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
|
||||||
|
} else if (tmpl_contains("<|start_of_role|>")) {
|
||||||
|
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||||
|
}
|
||||||
|
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||||
|
}
|
||||||
|
|
||||||
// Simple version of "llama_apply_chat_template" that only works with strings
|
// Simple version of "llama_apply_chat_template" that only works with strings
|
||||||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||||||
static int32_t llama_chat_apply_template_internal(
|
static int32_t llama_chat_apply_template_internal(
|
||||||
const std::string & tmpl,
|
const llm_chat_template tmpl,
|
||||||
const std::vector<const llama_chat_message *> & chat,
|
const std::vector<const llama_chat_message *> & chat,
|
||||||
std::string & dest, bool add_ass) {
|
std::string & dest, bool add_ass) {
|
||||||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||||||
std::stringstream ss;
|
std::stringstream ss;
|
||||||
auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
|
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
|
||||||
return tmpl.find(haystack) != std::string::npos;
|
|
||||||
};
|
|
||||||
if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
|
|
||||||
// chatml template
|
// chatml template
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||||||
@ -21862,8 +22014,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|im_start|>assistant\n";
|
ss << "<|im_start|>assistant\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "llama2" || tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||||
if (tmpl == "mistral-v7" || tmpl_contains("[SYSTEM_PROMPT]")) {
|
|
||||||
// Official mistral 'v7' template
|
// Official mistral 'v7' template
|
||||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -21878,15 +22029,14 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
ss << " " << content << "</s>";
|
ss << " " << content << "</s>";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (tmpl == "mistral-v1" || tmpl == "mistral-v3" || tmpl == "mistral-v3-tekken"
|
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||||
|| tmpl_contains("' [INST] ' + system_message") // catches official 'v1' template
|
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|
||||||
|| tmpl_contains("[AVAILABLE_TOOLS]")) { // catches official 'v3' and 'v3-tekken' templates
|
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
|
||||||
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
|
||||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||||
std::string leading_space = (tmpl == "mistral-v1" || tmpl_contains(" [INST]") ? " " : "");
|
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
|
||||||
std::string trailing_space = (tmpl == "mistral-v3-tekken" || tmpl_contains("\"[INST]\"") ? "" : " ");
|
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
|
||||||
bool trim_assistant_message = tmpl_contains("|trim + eos_token");
|
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||||
bool is_inside_turn = false;
|
bool is_inside_turn = false;
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
if (!is_inside_turn) {
|
if (!is_inside_turn) {
|
||||||
@ -21904,17 +22054,19 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
is_inside_turn = false;
|
is_inside_turn = false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else {
|
} else if (
|
||||||
|
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|
||||||
|
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|
||||||
|
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|
||||||
|
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
|
||||||
// llama2 template and its variants
|
// llama2 template and its variants
|
||||||
// [variant] support system message
|
// [variant] support system message
|
||||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||||
bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "llama2";
|
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||||
// [variant] space before + after response
|
|
||||||
bool space_around_response = tmpl_contains("' ' + eos_token");
|
|
||||||
// [variant] add BOS inside history
|
// [variant] add BOS inside history
|
||||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||||
// [variant] trim spaces from the input message
|
// [variant] trim spaces from the input message
|
||||||
bool strip_message = tmpl_contains("content.strip()");
|
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||||
// construct the prompt
|
// construct the prompt
|
||||||
bool is_inside_turn = true; // skip BOS at the beginning
|
bool is_inside_turn = true; // skip BOS at the beginning
|
||||||
ss << "[INST] ";
|
ss << "[INST] ";
|
||||||
@ -21935,13 +22087,11 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
} else if (role == "user") {
|
} else if (role == "user") {
|
||||||
ss << content << " [/INST]";
|
ss << content << " [/INST]";
|
||||||
} else {
|
} else {
|
||||||
ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
|
ss << content << "</s>";
|
||||||
is_inside_turn = false;
|
is_inside_turn = false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// llama2 templates seem to not care about "add_generation_prompt
|
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
|
||||||
}
|
|
||||||
} else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
|
|
||||||
// Phi 3
|
// Phi 3
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -21950,7 +22100,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>\n";
|
ss << "<|assistant|>\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||||
// zephyr template
|
// zephyr template
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||||||
@ -21958,7 +22108,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>\n";
|
ss << "<|assistant|>\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
|
||||||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||||
@ -21967,7 +22117,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<s>assistant\n";
|
ss << "<s>assistant\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
|
||||||
// google/gemma-7b-it
|
// google/gemma-7b-it
|
||||||
std::string system_prompt = "";
|
std::string system_prompt = "";
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -21989,7 +22139,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<start_of_turn>model\n";
|
ss << "<start_of_turn>model\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
|
||||||
// OrionStarAI/Orion-14B-Chat
|
// OrionStarAI/Orion-14B-Chat
|
||||||
std::string system_prompt = "";
|
std::string system_prompt = "";
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -22009,7 +22159,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
ss << message->content << "</s>";
|
ss << message->content << "</s>";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
|
||||||
// openchat/openchat-3.5-0106,
|
// openchat/openchat-3.5-0106,
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22023,13 +22173,13 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "GPT4 Correct Assistant:";
|
ss << "GPT4 Correct Assistant:";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
if (role == "system") {
|
if (role == "system") {
|
||||||
// Orca-Vicuna variant uses a system prefix
|
// Orca-Vicuna variant uses a system prefix
|
||||||
if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
|
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||||
ss << "SYSTEM: " << message->content << "\n";
|
ss << "SYSTEM: " << message->content << "\n";
|
||||||
} else {
|
} else {
|
||||||
ss << message->content << "\n\n";
|
ss << message->content << "\n\n";
|
||||||
@ -22043,7 +22193,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "ASSISTANT:";
|
ss << "ASSISTANT:";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
|
||||||
// deepseek-ai/deepseek-coder-33b-instruct
|
// deepseek-ai/deepseek-coder-33b-instruct
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22058,7 +22208,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "### Response:\n";
|
ss << "### Response:\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
|
||||||
// CohereForAI/c4ai-command-r-plus
|
// CohereForAI/c4ai-command-r-plus
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22073,7 +22223,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
|
||||||
// Llama 3
|
// Llama 3
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22082,7 +22232,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||||
// chatglm3-6b
|
// chatglm3-6b
|
||||||
ss << "[gMASK]" << "sop";
|
ss << "[gMASK]" << "sop";
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -22092,7 +22242,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>";
|
ss << "<|assistant|>";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||||
ss << "[gMASK]" << "<sop>";
|
ss << "[gMASK]" << "<sop>";
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22101,7 +22251,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>";
|
ss << "<|assistant|>";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22113,7 +22263,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
ss << trim(message->content);
|
ss << trim(message->content);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
|
||||||
// DeepSeek-V2
|
// DeepSeek-V2
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22128,7 +22278,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "Assistant:";
|
ss << "Assistant:";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
|
||||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||||
// EXAONE-3.0-7.8B-Instruct
|
// EXAONE-3.0-7.8B-Instruct
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -22144,7 +22294,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "[|assistant|]";
|
ss << "[|assistant|]";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "rwkv-world" || tmpl_contains("rwkv-world")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||||
// this template requires the model to have "\n\n" as EOT token
|
// this template requires the model to have "\n\n" as EOT token
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22154,7 +22304,7 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
ss << message->content << "\n\n";
|
ss << message->content << "\n\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (tmpl == "granite" || tmpl_contains("<|start_of_role|>")) {
|
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
|
||||||
// IBM Granite template
|
// IBM Granite template
|
||||||
for (const auto & message : chat) {
|
for (const auto & message : chat) {
|
||||||
std::string role(message->role);
|
std::string role(message->role);
|
||||||
@ -22206,7 +22356,11 @@ int32_t llama_chat_apply_template(
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::string formatted_chat;
|
std::string formatted_chat;
|
||||||
int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
|
llm_chat_template detected_tmpl = llama_chat_detect_template(curr_tmpl);
|
||||||
|
if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
int32_t res = llama_chat_apply_template_internal(detected_tmpl, chat_vec, formatted_chat, add_ass);
|
||||||
if (res < 0) {
|
if (res < 0) {
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
@ -22216,6 +22370,15 @@ int32_t llama_chat_apply_template(
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
|
||||||
|
auto it = LLM_CHAT_TEMPLATES.begin();
|
||||||
|
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
|
||||||
|
output[i] = it->first.c_str();
|
||||||
|
std::advance(it, 1);
|
||||||
|
}
|
||||||
|
return (int32_t) LLM_CHAT_TEMPLATES.size();
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// sampling
|
// sampling
|
||||||
//
|
//
|
||||||
|
@ -82,9 +82,9 @@ int main(void) {
|
|||||||
// mistralai/Mistral-7B-Instruct-v0.2 (NOTE: Old pre-v1 without a system prompt)
|
// mistralai/Mistral-7B-Instruct-v0.2 (NOTE: Old pre-v1 without a system prompt)
|
||||||
"[INST] You are a helpful assistant\nHello [/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
"[INST] You are a helpful assistant\nHello [/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||||
// TheBloke/FusionNet_34Bx2_MoE-AWQ
|
// TheBloke/FusionNet_34Bx2_MoE-AWQ
|
||||||
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
||||||
// bofenghuang/vigogne-2-70b-chat
|
// bofenghuang/vigogne-2-70b-chat
|
||||||
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s>[INST] Who are you [/INST]I am an assistant</s>[INST] Another question [/INST]",
|
||||||
// mlabonne/AlphaMonarch-7B
|
// mlabonne/AlphaMonarch-7B
|
||||||
"system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
|
"system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
|
||||||
// google/gemma-7b-it
|
// google/gemma-7b-it
|
||||||
@ -133,6 +133,17 @@ int main(void) {
|
|||||||
std::vector<char> formatted_chat(1024);
|
std::vector<char> formatted_chat(1024);
|
||||||
int32_t res;
|
int32_t res;
|
||||||
|
|
||||||
|
// list all supported templates
|
||||||
|
std::vector<const char *> supported_tmpl;
|
||||||
|
res = llama_chat_builtin_templates(nullptr, 0);
|
||||||
|
assert(res > 0);
|
||||||
|
supported_tmpl.resize(res);
|
||||||
|
res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
|
||||||
|
printf("Built-in chat templates:\n");
|
||||||
|
for (auto tmpl : supported_tmpl) {
|
||||||
|
printf(" %s\n", tmpl);
|
||||||
|
}
|
||||||
|
|
||||||
// test invalid chat template
|
// test invalid chat template
|
||||||
res = llama_chat_apply_template(nullptr, "INVALID TEMPLATE", conversation, message_count, true, formatted_chat.data(), formatted_chat.size());
|
res = llama_chat_apply_template(nullptr, "INVALID TEMPLATE", conversation, message_count, true, formatted_chat.data(), formatted_chat.size());
|
||||||
assert(res < 0);
|
assert(res < 0);
|
||||||
@ -174,7 +185,8 @@ int main(void) {
|
|||||||
assert(fmt_sys("mistral-v3") == "[INST] You are a helpful assistant\n\n");
|
assert(fmt_sys("mistral-v3") == "[INST] You are a helpful assistant\n\n");
|
||||||
assert(fmt_sys("mistral-v3-tekken") == "[INST]You are a helpful assistant\n\n");
|
assert(fmt_sys("mistral-v3-tekken") == "[INST]You are a helpful assistant\n\n");
|
||||||
assert(fmt_sys("mistral-v7") == "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT]");
|
assert(fmt_sys("mistral-v7") == "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT]");
|
||||||
assert(fmt_sys("llama2") == "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\n");
|
assert(fmt_sys("llama2") == "[INST] You are a helpful assistant\n");
|
||||||
|
assert(fmt_sys("llama2-sys") == "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\n");
|
||||||
assert(fmt_sys("mistral") == "[INST] You are a helpful assistant\n"); // for old pre-v1 templates
|
assert(fmt_sys("mistral") == "[INST] You are a helpful assistant\n"); // for old pre-v1 templates
|
||||||
assert(fmt_sys("gemma") == ""); // for gemma, system message is merged with user message
|
assert(fmt_sys("gemma") == ""); // for gemma, system message is merged with user message
|
||||||
assert(fmt_sys("llama3") == "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|>");
|
assert(fmt_sys("llama3") == "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|>");
|
||||||
@ -203,5 +215,7 @@ int main(void) {
|
|||||||
assert(fmt_single("gemma") == "\n<start_of_turn>user\nHow are you<end_of_turn>\n<start_of_turn>model\n");
|
assert(fmt_single("gemma") == "\n<start_of_turn>user\nHow are you<end_of_turn>\n<start_of_turn>model\n");
|
||||||
assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n");
|
assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n");
|
||||||
|
|
||||||
|
printf("Test chat templates: OK\n");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user