add chatglm3-6b model support huggingface model:

https://hf-mirror.com/THUDM/chatglm3-6b

Signed-off-by: XingXing Qiao <qiaoxx@dingdao.com>
This commit is contained in:
XingXing Qiao 2024-05-29 13:30:07 +08:00
parent b864b50ce5
commit 6630a2da48
6 changed files with 398 additions and 6 deletions

View File

@ -79,7 +79,7 @@ class Model:
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
if self.ftype == gguf.LlamaFileType.GUESSED:
@ -2710,6 +2710,167 @@ class DeepseekV2Model(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("ChatGLMModel")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM
def set_vocab(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
toktypes: list[int] = []
scores: list[float] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
assert max(tokenizer.get_vocab().values()) < vocab_size
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.get_vocab().items()}
for token_id in range(vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
if token_id == 0:
piece = "<unk>"
elif token_id == 1:
piece = "<bos>"
elif token_id == 2:
piece = "<eos>"
text = piece.encode("utf-8")
score = 0.0
if len(piece) != 0 and token_id < 64789:
score = tokenizer.tokenizer.sp_model.get_score(token_id)
if len(piece) == 0:
text = f"[PAD{token_id}]".encode("utf-8")
if token_id >= 64789:
toktype = SentencePieceTokenTypes.UNKNOWN
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
continue
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.tokenizer.sp_model.is_unknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.tokenizer.sp_model.is_control(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.tokenizer.sp_model.is_unused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.tokenizer.sp_model.is_byte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
self.gguf_writer.add_name("ChatGLM-6b-chat")
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_head_kv = self.hparams.get("multi_query_group_num", n_head)
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
self.gguf_writer.add_embedding_length(n_embed)
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
self.gguf_writer.add_block_count(self.hparams["num_layers"])
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_rope_dimension_count(64)
self.gguf_writer.add_add_bos_token(False)
def write_tensors(self):
block_count = self.hparams["num_layers"]
tensors = dict(self.get_tensors())
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
has_lm_head = True
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
for name, data_torch in tensors.items():
if name.endswith(".rotary_pos_emb.inv_freq"):
continue
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
has_lm_head = False
name = re.sub(r'transformer\.', '', name)
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
data = np.concatenate(
(
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
),
axis=0,
)
print("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
data = np.concatenate(
(
qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,)),
),
axis=0,
)
print("re-format attention.linear_qkv.bias")
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if not has_lm_head and name == "word_embeddings.weight":
self.gguf_writer.add_tensor("output.weight", data)
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
###### CONVERSION LOGIC ######

View File

@ -148,6 +148,7 @@ class MODEL_ARCH(IntEnum):
OLMO = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
class MODEL_TENSOR(IntEnum):
@ -236,6 +237,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -805,6 +807,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
}
@ -842,6 +856,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.CHATGLM: [
MODEL_TENSOR.ROPE_FREQS,
],
}
#

View File

@ -24,6 +24,7 @@ class TensorNameMap:
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
"embedding.word_embeddings", # chatglm
),
# Token type embeddings
@ -52,6 +53,7 @@ class TensorNameMap:
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
"output_layer", # chatglm
),
# Output norm
@ -68,11 +70,13 @@ class TensorNameMap:
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
"transformer.rms_norm", # Grok
"encoder.final_layernorm", # chatglm
),
# Rope frequencies
MODEL_TENSOR.ROPE_FREQS: (
"rope.freqs", # llama-pth
"rotary_pos_emb.inv_freq", # chatglm
),
}
@ -97,6 +101,7 @@ class TensorNameMap:
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm
),
# Attention norm 2
@ -117,7 +122,8 @@ class TensorNameMap:
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"model.layers.{bid}.self_attn.qkv_proj" # phi3
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
),
# Attention query
@ -128,7 +134,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
),
# Attention key
@ -140,7 +146,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.k", # refact
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
),
# Attention value
@ -175,6 +181,7 @@ class TensorNameMap:
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"encoder.layers.{bid}.self_attention.dense", # chatglm
),
# Attention output norm
@ -206,6 +213,7 @@ class TensorNameMap:
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
),
MODEL_TENSOR.FFN_GATE_INP: (
@ -245,6 +253,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -311,6 +320,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w2", # arctic
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
),
MODEL_TENSOR.FFN_DOWN_EXP: (

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.9.0"
version = "0.9.1"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

200
llama.cpp
View File

@ -223,6 +223,7 @@ enum llm_arch {
LLM_ARCH_OLMO,
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_UNKNOWN,
};
@ -261,6 +262,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_OLMO, "olmo" },
{ LLM_ARCH_ARCTIC, "arctic" },
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -1108,6 +1110,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_CHATGLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@ -4486,6 +4503,14 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_CHATGLM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: model.type = e_model::MODEL_7B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@ -6319,6 +6344,36 @@ static bool llm_load_tensors(
}
}
} break;
case LLM_ARCH_CHATGLM:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -6553,6 +6608,7 @@ enum llm_ffn_op_type {
LLM_FFN_GELU,
LLM_FFN_RELU,
LLM_FFN_RELU_SQR,
LLM_FFN_SWIGLU,
};
enum llm_ffn_gate_type {
@ -6743,6 +6799,19 @@ static struct ggml_tensor * llm_build_ffn(
cur = ggml_sqr(ctx, cur);
cb(cur, "ffn_sqr(relu)", il);
} break;
case LLM_FFN_SWIGLU:
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_silu(ctx, x0);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx, x0, x1);
cb(cur, "ffn_mul", il);
} break;
}
if (type_gate == LLM_FFN_PAR) {
@ -11334,6 +11403,119 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_chatglm() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
struct ggml_tensor * Qcur = nullptr;
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur_rope", il);
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
NULL, NULL,
model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = llm_build_norm(ctx0, inpL, hparams,
model.output_norm,
NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@ -11556,6 +11738,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_deepseek2();
} break;
case LLM_ARCH_CHATGLM:
{
result = llm.build_chatglm();
} break;
default:
GGML_ASSERT(false);
}
@ -16550,6 +16736,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_OLMO:
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
@ -18541,6 +18728,19 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == "chatglm3" ||
(tmpl.find("add_generation_prompt") != std::string::npos &&
tmpl.find("for message in messages") != std::string::npos &&
tmpl.find("loop.first") != std::string::npos)) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else {
// template not supported
return -1;

View File

@ -56,7 +56,9 @@ int main(void) {
//Phi-3-medium
"{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
//Phi-3-vision
"{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}"
"{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
// ChatGLM3
"{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
};
std::vector<std::string> expected_output = {
// teknium/OpenHermes-2.5-Mistral-7B
@ -93,6 +95,8 @@ int main(void) {
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-vision
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
// ChatGLM3
"[gMASK]sop<|system|>\n You are a helpful assistant<|user|>\n Hello<|assistant|>\n Hi there<|user|>\n Who are you<|assistant|>\n I am an assistant <|user|>\n Another question<|assistant|>",
};
std::vector<char> formatted_chat(1024);
int32_t res;