diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index c2aba9097..769d49a8b 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -48,34 +48,38 @@ class Model: dir_model: Path ftype: gguf.LlamaFileType + fname_out: Path | None is_big_endian: bool endianess: gguf.GGUFEndian use_temp_file: bool lazy: bool - model_name: str | None part_names: list[str] is_safetensors: bool hparams: dict[str, Any] block_count: int tensor_map: gguf.TensorNameMap tensor_names: set[str] | None - fname_out: Path gguf_writer: gguf.GGUFWriter + model_name: str | None + metadata_override: Path | None # subclasses should define this! model_arch: gguf.MODEL_ARCH - def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, - model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False): + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | None, is_big_endian: bool = False, + use_temp_file: bool = False, eager: bool = False, + metadata_override: Path | None = None, model_name: str | None = None, + split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False): if type(self) is Model: raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") + self.dir_model = dir_model self.ftype = ftype + self.fname_out = fname_out self.is_big_endian = is_big_endian self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file self.lazy = not eager - self.model_name = model_name self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") self.is_safetensors = len(self.part_names) > 0 if not self.is_safetensors: @@ -84,6 +88,10 @@ class Model: self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"]) self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) self.tensor_names = None + self.metadata_override = metadata_override + self.model_name = model_name + + # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type if self.ftype == gguf.LlamaFileType.GUESSED: # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie. _, first_tensor = next(self.get_tensors()) @@ -93,10 +101,8 @@ class Model: else: logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})") self.ftype = gguf.LlamaFileType.MOSTLY_BF16 - ftype_up: str = self.ftype.name.partition("_")[2].upper() - ftype_lw: str = ftype_up.lower() - # allow templating the file name with the output ftype, useful with the "auto" ftype - self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up) + + # Configure GGUF Writer self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard) @@ -193,7 +199,6 @@ class Model: return new_name def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.block_count) if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: @@ -250,7 +255,7 @@ class Model: return False - def write_tensors(self): + def prepare_tensors(self): max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") for name, data_torch in self.get_tensors(): @@ -333,9 +338,67 @@ class Model: self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype) + def set_type(self): + self.gguf_writer.add_type(gguf.GGUFType.MODEL) + + def prepare_metadata(self, vocab_only: bool): + + total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count() + + self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model, self.model_name, total_params) + + # Fallback to model directory name if metadata name is still missing + if self.metadata.name is None: + self.metadata.name = self.dir_model.name + + # Generate parameter weight class (useful for leader boards) if not yet determined + if self.metadata.size_label is None and total_params > 0: + self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count) + + # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0' + output_type: str = self.ftype.name.partition("_")[2] + + # Filename Output + # Note: `not is_dir()` is used because `.is_file()` will not detect + # file template strings as it doesn't actually exist as a file + if self.fname_out is not None and not self.fname_out.is_dir(): + # Output path is a custom defined templated filename + + # Process templated file name with the output ftype, useful with the "auto" ftype + self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) + else: + # Generate default filename based on model specification and available metadata + if not vocab_only: + fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None) + else: + fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab") + + # Check if preferred output directory path was provided + if self.fname_out is not None and self.fname_out.is_dir(): + # output path is a directory + self.fname_out = self.fname_out / f"{fname_default}.gguf" + else: + # output in the same directory as the model by default + self.fname_out = self.dir_model / f"{fname_default}.gguf" + + self.set_type() + + logger.info("Set meta model") + self.metadata.set_gguf_meta_model(self.gguf_writer) + + logger.info("Set model parameters") + self.set_gguf_parameters() + + logger.info("Set model tokenizer") + self.set_vocab() + + logger.info("Set model quantization version") + self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) + def write(self): - self.write_tensors() - self.gguf_writer.write_header_to_file(self.fname_out) + self.prepare_tensors() + self.prepare_metadata(vocab_only=False) + self.gguf_writer.write_header_to_file(path=self.fname_out) self.gguf_writer.write_kv_data_to_file() self.gguf_writer.write_tensors_to_file(progress=True) self.gguf_writer.close() @@ -343,7 +406,9 @@ class Model: def write_vocab(self): if len(self.gguf_writer.tensors) != 1: raise ValueError('Splitting the vocabulary is not supported') - self.gguf_writer.write_header_to_file(self.fname_out) + + self.prepare_metadata(vocab_only=True) + self.gguf_writer.write_header_to_file(path=self.fname_out) self.gguf_writer.write_kv_data_to_file() self.gguf_writer.close() @@ -780,7 +845,6 @@ class GPTNeoXModel(Model): def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -836,7 +900,6 @@ class BloomModel(Model): model_arch = gguf.MODEL_ARCH.BLOOM def set_gguf_parameters(self): - self.gguf_writer.add_name("Bloom") n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) @@ -913,7 +976,6 @@ class MPTModel(Model): def set_gguf_parameters(self): block_count = self.hparams["n_layers"] - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_block_count(block_count) @@ -952,7 +1014,6 @@ class OrionModel(Model): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) - hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: @@ -965,8 +1026,6 @@ class OrionModel(Model): raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_file_type(self.ftype) - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) - self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -990,7 +1049,6 @@ class BaichuanModel(Model): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) - hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: @@ -1002,8 +1060,6 @@ class BaichuanModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) - self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -1117,7 +1173,6 @@ class XverseModel(Model): block_count = self.hparams["num_hidden_layers"] head_count = self.hparams["num_attention_heads"] head_count_kv = self.hparams.get("num_key_value_heads", head_count) - hf_repo = self.hparams.get("_name_or_path", "") ctx_length = 0 if "max_sequence_length" in self.hparams: @@ -1129,8 +1184,6 @@ class XverseModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) - self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -1189,7 +1242,6 @@ class FalconModel(Model): if n_head_kv is None: n_head_kv = self.hparams.get("n_head_kv", 1) # old name - self.gguf_writer.add_name("Falcon") self.gguf_writer.add_context_length(2048) # not in config.json self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -1234,7 +1286,6 @@ class StarCoderModel(Model): def set_gguf_parameters(self): block_count = self.hparams["n_layer"] - self.gguf_writer.add_name("StarCoder") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) @@ -1269,7 +1320,6 @@ class RefactModel(Model): block_count = self.hparams["n_layer"] - self.gguf_writer.add_name("Refact") # refact uses Alibi. So this is from config.json which might be used by training. self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) @@ -1324,7 +1374,6 @@ class StableLMModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -1386,8 +1435,8 @@ class StableLMModel(Model): return [(new_name, data_torch)] - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() if self._q_norms is not None or self._k_norms is not None: # flatten two `list[dict[str, Tensor]]` into a single `list[str]` @@ -1503,8 +1552,8 @@ class LlamaModel(Model): return [(self.map_tensor_name(name), data_torch)] - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -1567,7 +1616,6 @@ class GrokModel(Model): def set_gguf_parameters(self): super().set_gguf_parameters() - self.gguf_writer.add_name("Grok") _experts: list[dict[str, Tensor]] | None = None @@ -1616,7 +1664,6 @@ class DbrxModel(Model): def set_gguf_parameters(self): ffn_config = self.hparams["ffn_config"] attn_config = self.hparams["attn_config"] - self.gguf_writer.add_name(self.hparams["model_type"]) self.gguf_writer.add_block_count(self.hparams["n_layers"]) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) @@ -1685,7 +1732,6 @@ class MiniCPMModel(Model): def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] - self.gguf_writer.add_name("MiniCPM") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -1755,7 +1801,6 @@ class QwenModel(Model): self._set_vocab_qwen() def set_gguf_parameters(self): - self.gguf_writer.add_name("Qwen") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -1831,8 +1876,8 @@ class Qwen2MoeModel(Model): return [(self.map_tensor_name(name), data_torch)] - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -1846,7 +1891,6 @@ class GPT2Model(Model): model_arch = gguf.MODEL_ARCH.GPT2 def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_ctx"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) @@ -1889,7 +1933,6 @@ class Phi2Model(Model): n_embd = self.find_hparam(["hidden_size", "n_embd"]) n_head = self.find_hparam(["num_attention_heads", "n_head"]) - self.gguf_writer.add_name("Phi2") self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"])) self.gguf_writer.add_embedding_length(n_embd) @@ -2011,7 +2054,6 @@ class Phi3MiniModel(Model): orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"]) rope_dims = n_embd // n_head - self.gguf_writer.add_name("Phi3") self.gguf_writer.add_context_length(max_pos_embds) self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds) self.gguf_writer.add_embedding_length(n_embd) @@ -2068,7 +2110,6 @@ class PlamoModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name("PLaMo") self.gguf_writer.add_context_length(4096) # not in config.json self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) @@ -2113,7 +2154,6 @@ class CodeShellModel(Model): def set_gguf_parameters(self): block_count = self.hparams["n_layer"] - self.gguf_writer.add_name("CodeShell") self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) @@ -2272,7 +2312,6 @@ class InternLM2Model(Model): special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): - self.gguf_writer.add_name("InternLM2") self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) @@ -2440,7 +2479,6 @@ class GemmaModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -2481,7 +2519,6 @@ class Gemma2Model(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -2556,7 +2593,6 @@ class MambaModel(Model): # Fail early for models which don't have a block expansion factor of 2 assert d_inner == 2 * d_model - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading @@ -2735,7 +2771,6 @@ class OpenELMModel(Model): assert self.block_count == len(self._num_query_heads) assert self.block_count == len(self._ffn_dims) - self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.block_count) self.gguf_writer.add_context_length(self.hparams["max_context_length"]) self.gguf_writer.add_embedding_length(n_embd) @@ -2909,8 +2944,8 @@ class ArcticModel(Model): return [(self.map_tensor_name(name), data_torch)] - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -2988,8 +3023,8 @@ class DeepseekV2Model(Model): return [(self.map_tensor_name(name), data_torch)] - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -3107,7 +3142,6 @@ class T5Model(Model): self.gguf_writer.add_add_eos_token(True) def set_gguf_parameters(self): - self.gguf_writer.add_name("T5") if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: logger.warning("Couldn't find context length in config.json, assuming default value of 512") n_ctx = 512 @@ -3181,7 +3215,6 @@ class JaisModel(Model): self._set_vocab_gpt2() def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_positions"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) @@ -3227,8 +3260,8 @@ class JaisModel(Model): return tensors - def write_tensors(self): - super().write_tensors() + def prepare_tensors(self): + super().prepare_tensors() self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) @@ -3539,6 +3572,10 @@ def parse_args() -> argparse.Namespace: "--no-tensor-first-split", action="store_true", help="do not add tensors to the first split (disabled by default)" ) + parser.add_argument( + "--metadata", type=Path, + help="Specify the path for an authorship metadata override file" + ) return parser.parse_args() @@ -3564,7 +3601,10 @@ def split_str_to_n_bytes(split_str: str) -> int: def main() -> None: args = parse_args() - logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + if args.verbose: + logging.basicConfig(level=logging.DEBUG) + else: + logging.basicConfig(level=logging.INFO) dir_model = args.model @@ -3585,37 +3625,33 @@ def main() -> None: logger.error("Error: Cannot use temp file when splitting") sys.exit(1) + fname_out = None + if args.outfile is not None: fname_out = args.outfile - else: - # output in the same directory as the model by default - fname_out = dir_model / 'ggml-model-{ftype}.gguf' logger.info(f"Loading model: {dir_model.name}") hparams = Model.load_hparams(dir_model) with torch.inference_mode(): + output_type = ftype_map[args.outtype] + model_architecture = hparams["architectures"][0] + try: - model_class = Model.from_model_architecture(hparams["architectures"][0]) + model_class = Model.from_model_architecture(model_architecture) except NotImplementedError: - logger.error(f"Model {hparams['architectures'][0]} is not supported") + logger.error(f"Model {model_architecture} is not supported") sys.exit(1) - model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, - args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors, + model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out, + is_big_endian=args.bigendian, use_temp_file=args.use_temp_file, + eager=args.no_lazy, + metadata_override=args.metadata, model_name=args.model_name, + split_max_tensors=args.split_max_tensors, split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run, small_first_shard=args.no_tensor_first_split) - logger.info("Set model parameters") - model_instance.gguf_writer.add_type(gguf.GGUFType.MODEL) - model_instance.set_gguf_parameters() - - logger.info("Set model tokenizer") - model_instance.set_vocab() - - model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) - if args.vocab_only: logger.info("Exporting model vocab...") model_instance.write_vocab() @@ -3623,6 +3659,7 @@ def main() -> None: else: logger.info("Exporting model...") model_instance.write() + assert model_instance.fname_out is not None out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out logger.info(f"Model successfully exported to {out_path}") diff --git a/convert_lora_to_gguf.py b/convert_lora_to_gguf.py index 4bb939d45..66e8da37c 100755 --- a/convert_lora_to_gguf.py +++ b/convert_lora_to_gguf.py @@ -251,6 +251,10 @@ def parse_args() -> argparse.Namespace: "--verbose", action="store_true", help="increase output verbosity", ) + parser.add_argument( + "--dry-run", action="store_true", + help="only print out what will be done, without writing any new files", + ) parser.add_argument( "--base", type=Path, required=True, help="directory containing base model file", @@ -300,6 +304,12 @@ if __name__ == '__main__': # load base model logger.info(f"Loading base model: {dir_base_model.name}") hparams = Model.load_hparams(dir_base_model) + + with open(lora_config, "r") as f: + lparams: dict[str, Any] = json.load(f) + + alpha: float = lparams["lora_alpha"] + with torch.inference_mode(): try: model_class = Model.from_model_architecture(hparams["architectures"][0]) @@ -310,6 +320,14 @@ if __name__ == '__main__': class LoraModel(model_class): model_arch = model_class.model_arch + def set_type(self): + self.gguf_writer.add_type(gguf.GGUFType.ADAPTER) + self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora") + + def set_gguf_parameters(self): + self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha)) + super().set_gguf_parameters() + def get_tensors(self) -> Iterator[tuple[str, Tensor]]: tensor_map: dict[str, PartialLoraTensor] = {} @@ -357,18 +375,9 @@ if __name__ == '__main__': is_big_endian=args.bigendian, use_temp_file=False, eager=args.no_lazy, - model_name=None, + dry_run=args.dry_run, ) - with open(lora_config, "r") as f: - lparams: dict[str, Any] = json.load(f) - - alpha = lparams["lora_alpha"] - - model_instance.gguf_writer.add_string(gguf.Keys.General.TYPE, gguf.GGUFType.ADAPTER) - model_instance.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora") - model_instance.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha)) - model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) logger.info("Exporting model...") model_instance.write() logger.info(f"Model successfully exported to {model_instance.fname_out}") diff --git a/examples/convert_legacy_llama.py b/examples/convert_legacy_llama.py index c2c73e8ad..9ab9ab06e 100755 --- a/examples/convert_legacy_llama.py +++ b/examples/convert_legacy_llama.py @@ -24,7 +24,7 @@ from abc import ABC, abstractmethod from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional +from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar import numpy as np @@ -346,42 +346,6 @@ class Params: return params -@dataclass -class Metadata: - name: Optional[str] = None - author: Optional[str] = None - version: Optional[str] = None - url: Optional[str] = None - description: Optional[str] = None - license: Optional[str] = None - source_url: Optional[str] = None - source_hf_repo: Optional[str] = None - - @staticmethod - def load(metadata_path: Path) -> Metadata: - if metadata_path is None or not metadata_path.exists(): - return Metadata() - - with open(metadata_path, 'r') as file: - data = json.load(file) - - # Create a new Metadata instance - metadata = Metadata() - - # Assigning values to Metadata attributes if they exist in the JSON file - # This is based on LLM_KV_NAMES mapping in llama.cpp - metadata.name = data.get("general.name") - metadata.author = data.get("general.author") - metadata.version = data.get("general.version") - metadata.url = data.get("general.url") - metadata.description = data.get("general.description") - metadata.license = data.get("general.license") - metadata.source_url = data.get("general.source.url") - metadata.source_hf_repo = data.get("general.source.huggingface.repository") - - return metadata - - # # data loading # TODO: reuse (probably move to gguf.py?) @@ -806,7 +770,7 @@ class OutputFile: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) - def add_meta_model(self, params: Params, metadata: Metadata | None) -> None: + def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None: # Metadata About The Model And Its Provenence name = "LLaMA" if metadata is not None and metadata.name is not None: @@ -824,16 +788,73 @@ class OutputFile: self.gguf.add_author(metadata.author) if metadata.version is not None: self.gguf.add_version(metadata.version) - if metadata.url is not None: - self.gguf.add_url(metadata.url) + if metadata.organization is not None: + self.gguf.add_organization(metadata.organization) + + if metadata.finetune is not None: + self.gguf.add_finetune(metadata.finetune) + if metadata.basename is not None: + self.gguf.add_basename(metadata.basename) + if metadata.description is not None: self.gguf.add_description(metadata.description) + if metadata.quantized_by is not None: + self.gguf.add_quantized_by(metadata.quantized_by) + + if metadata.size_label is not None: + self.gguf.add_size_label(metadata.size_label) + if metadata.license is not None: - self.gguf.add_licence(metadata.license) + self.gguf.add_license(metadata.license) + if metadata.license_name is not None: + self.gguf.add_license_name(metadata.license_name) + if metadata.license_link is not None: + self.gguf.add_license_link(metadata.license_link) + + if metadata.url is not None: + self.gguf.add_url(metadata.url) + if metadata.doi is not None: + self.gguf.add_doi(metadata.doi) + if metadata.uuid is not None: + self.gguf.add_uuid(metadata.uuid) + if metadata.repo_url is not None: + self.gguf.add_repo_url(metadata.repo_url) + if metadata.source_url is not None: self.gguf.add_source_url(metadata.source_url) - if metadata.source_hf_repo is not None: - self.gguf.add_source_hf_repo(metadata.source_hf_repo) + if metadata.source_doi is not None: + self.gguf.add_source_doi(metadata.source_doi) + if metadata.source_uuid is not None: + self.gguf.add_source_uuid(metadata.source_uuid) + if metadata.source_repo_url is not None: + self.gguf.add_source_repo_url(metadata.source_repo_url) + + if metadata.base_models is not None: + self.gguf.add_base_model_count(len(metadata.base_models)) + for key, base_model_entry in enumerate(metadata.base_models): + if "name" in base_model_entry: + self.gguf.add_base_model_name(key, base_model_entry["name"]) + if "author" in base_model_entry: + self.gguf.add_base_model_author(key, base_model_entry["author"]) + if "version" in base_model_entry: + self.gguf.add_base_model_version(key, base_model_entry["version"]) + if "organization" in base_model_entry: + self.gguf.add_base_model_organization(key, base_model_entry["organization"]) + if "url" in base_model_entry: + self.gguf.add_base_model_url(key, base_model_entry["url"]) + if "doi" in base_model_entry: + self.gguf.add_base_model_doi(key, base_model_entry["doi"]) + if "uuid" in base_model_entry: + self.gguf.add_base_model_uuid(key, base_model_entry["uuid"]) + if "repo_url" in base_model_entry: + self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"]) + + if metadata.tags is not None: + self.gguf.add_tags(metadata.tags) + if metadata.languages is not None: + self.gguf.add_languages(metadata.languages) + if metadata.datasets is not None: + self.gguf.add_datasets(metadata.datasets) def add_meta_arch(self, params: Params) -> None: # Metadata About The Neural Architecture Itself @@ -944,7 +965,7 @@ class OutputFile: @staticmethod def write_vocab_only( fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None, + endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) @@ -978,7 +999,7 @@ class OutputFile: fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, - metadata: Metadata | None = None, + metadata: gguf.Metadata | None = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) @@ -1021,35 +1042,32 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT raise ValueError(f"Unexpected combination of types: {name_to_type}") -def model_parameter_count(model: LazyModel) -> int: - total_model_parameters = 0 - for i, (name, lazy_tensor) in enumerate(model.items()): - sum_weights_in_tensor = 1 +def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]: + total_params = 0 + shared_params = 0 + expert_params = 0 + + for name, lazy_tensor in tensors: + # We don't need these + if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): + continue + + # Got A Tensor + sum_weights_in_tensor: int = 1 + + # Tensor Volume for dim in lazy_tensor.shape: sum_weights_in_tensor *= dim - total_model_parameters += sum_weights_in_tensor - return total_model_parameters + if ".experts." in name: + if ".experts.0." in name: + expert_params += sum_weights_in_tensor + else: + shared_params += sum_weights_in_tensor -def model_parameter_count_rounded_notation(model_params_count: int) -> str: - if model_params_count > 1e12 : - # Trillions Of Parameters - scaled_model_params = model_params_count * 1e-12 - scale_suffix = "T" - elif model_params_count > 1e9 : - # Billions Of Parameters - scaled_model_params = model_params_count * 1e-9 - scale_suffix = "B" - elif model_params_count > 1e6 : - # Millions Of Parameters - scaled_model_params = model_params_count * 1e-6 - scale_suffix = "M" - else: - # Thousands Of Parameters - scaled_model_params = model_params_count * 1e-3 - scale_suffix = "K" + total_params += sum_weights_in_tensor - return f"{round(scaled_model_params)}{scale_suffix}" + return total_params, shared_params, expert_params def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: @@ -1231,34 +1249,24 @@ class VocabFactory: return vocab, special_vocab -def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str: - quantization = { +def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str: + name = metadata.name if metadata.name is not None else None + basename = metadata.basename if metadata.basename is not None else None + finetune = metadata.finetune if metadata.finetune is not None else None + version = metadata.version if metadata.version is not None else None + size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0) + + output_type = { GGMLFileType.AllF32: "F32", GGMLFileType.MostlyF16: "F16", GGMLFileType.MostlyQ8_0: "Q8_0", }[file_type] - parameters = model_parameter_count_rounded_notation(model_params_count) - - expert_count = "" - if params.n_experts is not None: - expert_count = f"{params.n_experts}x" - - version = "" - if metadata is not None and metadata.version is not None: - version = f"-{metadata.version}" - - name = "ggml-model" - if metadata is not None and metadata.name is not None: - name = metadata.name - elif params.path_model is not None: - name = params.path_model.name - - return f"{name}{version}-{expert_count}{parameters}-{quantization}" + return gguf.naming_convention(name, basename, finetune, version, size_label, output_type) -def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path: - default_filename = default_convention_outfile(file_type, params, model_params_count, metadata) +def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path: + default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata) ret = model_paths[0].parent / f"{default_filename}.gguf" if ret in model_paths: logger.error( @@ -1297,8 +1305,9 @@ def main(args_in: list[str] | None = None) -> None: parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") - parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file") + parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file") parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name") + parser.add_argument("--model-name", type=str, default=None, help="name of the model") args = parser.parse_args(args_in) @@ -1310,32 +1319,36 @@ def main(args_in: list[str] | None = None) -> None: else: logging.basicConfig(level=logging.INFO) - metadata = Metadata.load(args.metadata) + model_name = args.model_name + dir_model = args.model + + metadata = gguf.Metadata.load(args.metadata, dir_model, model_name) if args.get_outfile: - model_plus = load_some_model(args.model) + model_plus = load_some_model(dir_model) params = Params.load(model_plus) - model = convert_model_names(model_plus.model, params, args.skip_unknown) - model_params_count = model_parameter_count(model_plus.model) - ftype = pick_output_type(model, args.outtype) - print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100 + model = convert_model_names(model_plus.model, params, args.skip_unknown) + model_params_count = per_model_weight_count_estimation(model_plus.model.items()) + ftype = pick_output_type(model, args.outtype) + + if (metadata is None or metadata.name is None) and params.path_model is not None: + metadata.name = params.path_model.name + + print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100 return if args.no_vocab and args.vocab_only: raise ValueError("--vocab-only does not make sense with --no-vocab") if args.dump_single: - model_plus = lazy_load_file(args.model) + model_plus = lazy_load_file(dir_model) do_dump_model(model_plus) return if not args.vocab_only: - model_plus = load_some_model(args.model) + model_plus = load_some_model(dir_model) else: - model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) - - model_params_count = model_parameter_count(model_plus.model) - logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})") + model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None) if args.dump: do_dump_model(model_plus) @@ -1368,7 +1381,7 @@ def main(args_in: list[str] | None = None) -> None: logger.info(f"params = {params}") model_parent_path = model_plus.paths[0].parent - vocab_path = Path(args.vocab_dir or args.model or model_parent_path) + vocab_path = Path(args.vocab_dir or dir_model or model_parent_path) vocab_factory = VocabFactory(vocab_path) vocab_types = None if args.no_vocab else args.vocab_type.split(",") vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path) @@ -1399,13 +1412,21 @@ def main(args_in: list[str] | None = None) -> None: assert params is not None + if metadata.name is None and params.path_model is not None: + metadata.name = params.path_model.name + + model_params_count = per_model_weight_count_estimation(model_plus.model.items()) + logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})") + logger.info(f"Vocab info: {vocab}") logger.info(f"Special vocab info: {special_vocab}") model = model_plus.model model = convert_model_names(model, params, args.skip_unknown) ftype = pick_output_type(model, args.outtype) model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata) + outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata) + + metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0) params.ftype = ftype logger.info(f"Writing {outfile}, format {ftype}") diff --git a/gguf-py/README.md b/gguf-py/README.md index 9dd888f31..24af96a17 100644 --- a/gguf-py/README.md +++ b/gguf-py/README.md @@ -78,5 +78,13 @@ python -m build python -m twine upload dist/* ``` +## Run Unit Tests + +From root of this repository you can run this command to run all the unit tests + +```bash +python -m unittest discover ./gguf-py -v +``` + ## TODO - [ ] Include conversion scripts as command line entry points in this package. diff --git a/gguf-py/gguf/__init__.py b/gguf-py/gguf/__init__.py index ea5146b16..243defc4c 100644 --- a/gguf-py/gguf/__init__.py +++ b/gguf-py/gguf/__init__.py @@ -5,3 +5,5 @@ from .gguf_writer import * from .quants import * from .tensor_mapping import * from .vocab import * +from .utility import * +from .metadata import * diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 5eb3df706..e343c2ef1 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -19,19 +19,60 @@ GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h class Keys: class General: - TYPE = "general.type" - ARCHITECTURE = "general.architecture" - QUANTIZATION_VERSION = "general.quantization_version" - ALIGNMENT = "general.alignment" - NAME = "general.name" - AUTHOR = "general.author" - VERSION = "general.version" - URL = "general.url" - DESCRIPTION = "general.description" - LICENSE = "general.license" - SOURCE_URL = "general.source.url" - SOURCE_HF_REPO = "general.source.huggingface.repository" - FILE_TYPE = "general.file_type" + TYPE = "general.type" + ARCHITECTURE = "general.architecture" + QUANTIZATION_VERSION = "general.quantization_version" + ALIGNMENT = "general.alignment" + FILE_TYPE = "general.file_type" + + # Authorship Metadata + NAME = "general.name" + AUTHOR = "general.author" + VERSION = "general.version" + ORGANIZATION = "general.organization" + + FINETUNE = "general.finetune" + BASENAME = "general.basename" + + DESCRIPTION = "general.description" + QUANTIZED_BY = "general.quantized_by" + + SIZE_LABEL = "general.size_label" + + # Licensing details + LICENSE = "general.license" + LICENSE_NAME = "general.license.name" + LICENSE_LINK = "general.license.link" + + # Typically represents the converted GGUF repo (Unless native) + URL = "general.url" # Model Website/Paper + DOI = "general.doi" + UUID = "general.uuid" + REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...) + + # Model Source during conversion + SOURCE_URL = "general.source.url" # Model Website/Paper + SOURCE_DOI = "general.source.doi" + SOURCE_UUID = "general.source.uuid" + SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...) + + # Base Model Source. There can be more than one source if it's a merged + # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in + # tracing linage of models as it is finetuned or merged over time. + BASE_MODEL_COUNT = "general.base_model.count" + BASE_MODEL_NAME = "general.base_model.{id}.name" + BASE_MODEL_AUTHOR = "general.base_model.{id}.author" + BASE_MODEL_VERSION = "general.base_model.{id}.version" + BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization" + BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper + BASE_MODEL_DOI = "general.base_model.{id}.doi" + BASE_MODEL_UUID = "general.base_model.{id}.uuid" + BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...) + + # Array based KV stores + TAGS = "general.tags" + LANGUAGES = "general.languages" + DATASETS = "general.datasets" class LLM: VOCAB_SIZE = "{arch}.vocab_size" @@ -1233,7 +1274,6 @@ KEY_GENERAL_URL = Keys.General.URL KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION KEY_GENERAL_LICENSE = Keys.General.LICENSE KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL -KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE # LLM diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index b0197961d..ba6f53cda 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -7,6 +7,7 @@ import struct import tempfile from dataclasses import dataclass from enum import Enum, auto +from math import prod from pathlib import Path from io import BufferedWriter from typing import IO, Any, Sequence, Mapping @@ -106,6 +107,53 @@ class GGUFWriter: self.add_architecture() + def get_total_parameter_count(self) -> tuple[int, int, int, int]: + total_params = 0 + shared_params = 0 + expert_params = 0 + + expert_sum = 0 + n_expert_tensors = 0 + + last_lora_a: tuple[str, TensorInfo] | None = None + + for tensors in self.tensors: + for name, info in tensors.items(): + + shape = info.shape + + if name.endswith(".lora_a"): + last_lora_a = (name, info) + continue + elif name.endswith(".lora_b"): + if last_lora_a is None or last_lora_a[0] != name[:-1] + "a": + # Bail when the LoRA pair can't be found trivially + logger.warning("can't measure LoRA size correctly, tensor order is unusual") + return 0, 0, 0, 0 + else: + shape = (*shape[:-1], last_lora_a[1].shape[-1]) + + size = prod(shape) + + if "_exps." in name: + expert_params += (size // shape[-3]) + expert_sum += shape[-3] + n_expert_tensors += 1 + else: + shared_params += size + + total_params += size + + # Hopefully this should work even for variable-expert-count models + expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0 + + # Negate the total to signal it's likely not exact + if last_lora_a is not None: + total_params = -total_params + + # NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py + return total_params, shared_params, expert_params, expert_count + def format_shard_names(self, path: Path) -> list[Path]: if len(self.tensors) == 1: return [path] @@ -115,6 +163,7 @@ class GGUFWriter: if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path): # allow calling this multiple times as long as the path is the same return + if self.state is not WriterState.NO_FILE: raise ValueError(f'Expected output file to be not yet opened, got {self.state}') @@ -136,6 +185,8 @@ class GGUFWriter: if self.dry_run: logger.info("Dry run, not writing files") + for name in filenames: + print(name) # noqa: NP100 exit() return filenames @@ -430,29 +481,12 @@ class GGUFWriter: def add_architecture(self) -> None: self.add_string(Keys.General.ARCHITECTURE, self.arch) - def add_author(self, author: str) -> None: - self.add_string(Keys.General.AUTHOR, author) + def add_quantization_version(self, quantization_version: int) -> None: + self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version) - def add_version(self, version: str) -> None: - self.add_string(Keys.General.VERSION, version) - - def add_tensor_data_layout(self, layout: str) -> None: - self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) - - def add_url(self, url: str) -> None: - self.add_string(Keys.General.URL, url) - - def add_description(self, description: str) -> None: - self.add_string(Keys.General.DESCRIPTION, description) - - def add_licence(self, licence: str) -> None: - self.add_string(Keys.General.LICENSE, licence) - - def add_source_url(self, url: str) -> None: - self.add_string(Keys.General.SOURCE_URL, url) - - def add_source_hf_repo(self, repo: str) -> None: - self.add_string(Keys.General.SOURCE_HF_REPO, repo) + def add_custom_alignment(self, alignment: int) -> None: + self.data_alignment = alignment + self.add_uint32(Keys.General.ALIGNMENT, alignment) def add_file_type(self, ftype: int) -> None: self.add_uint32(Keys.General.FILE_TYPE, ftype) @@ -460,13 +494,101 @@ class GGUFWriter: def add_name(self, name: str) -> None: self.add_string(Keys.General.NAME, name) - def add_quantization_version(self, quantization_version: int) -> None: - self.add_uint32( - Keys.General.QUANTIZATION_VERSION, quantization_version) + def add_author(self, author: str) -> None: + self.add_string(Keys.General.AUTHOR, author) - def add_custom_alignment(self, alignment: int) -> None: - self.data_alignment = alignment - self.add_uint32(Keys.General.ALIGNMENT, alignment) + def add_version(self, version: str) -> None: + self.add_string(Keys.General.VERSION, version) + + def add_organization(self, organization: str) -> None: + self.add_string(Keys.General.ORGANIZATION, organization) + + def add_finetune(self, finetune: str) -> None: + self.add_string(Keys.General.FINETUNE, finetune) + + def add_basename(self, basename: str) -> None: + self.add_string(Keys.General.BASENAME, basename) + + def add_description(self, description: str) -> None: + self.add_string(Keys.General.DESCRIPTION, description) + + def add_quantized_by(self, quantized: str) -> None: + self.add_string(Keys.General.QUANTIZED_BY, quantized) + + def add_size_label(self, size_label: str) -> None: + self.add_string(Keys.General.SIZE_LABEL, size_label) + + def add_license(self, license: str) -> None: + self.add_string(Keys.General.LICENSE, license) + + def add_license_name(self, license: str) -> None: + self.add_string(Keys.General.LICENSE_NAME, license) + + def add_license_link(self, license: str) -> None: + self.add_string(Keys.General.LICENSE_LINK, license) + + def add_url(self, url: str) -> None: + self.add_string(Keys.General.URL, url) + + def add_doi(self, doi: str) -> None: + self.add_string(Keys.General.DOI, doi) + + def add_uuid(self, uuid: str) -> None: + self.add_string(Keys.General.UUID, uuid) + + def add_repo_url(self, repo_url: str) -> None: + self.add_string(Keys.General.REPO_URL, repo_url) + + def add_source_url(self, url: str) -> None: + self.add_string(Keys.General.SOURCE_URL, url) + + def add_source_doi(self, doi: str) -> None: + self.add_string(Keys.General.SOURCE_DOI, doi) + + def add_source_uuid(self, uuid: str) -> None: + self.add_string(Keys.General.SOURCE_UUID, uuid) + + def add_source_repo_url(self, repo_url: str) -> None: + self.add_string(Keys.General.SOURCE_REPO_URL, repo_url) + + def add_base_model_count(self, source_count: int) -> None: + self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count) + + def add_base_model_name(self, source_id: int, name: str) -> None: + self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name) + + def add_base_model_author(self, source_id: int, author: str) -> None: + self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author) + + def add_base_model_version(self, source_id: int, version: str) -> None: + self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version) + + def add_base_model_organization(self, source_id: int, organization: str) -> None: + self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization) + + def add_base_model_url(self, source_id: int, url: str) -> None: + self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url) + + def add_base_model_doi(self, source_id: int, doi: str) -> None: + self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi) + + def add_base_model_uuid(self, source_id: int, uuid: str) -> None: + self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid) + + def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None: + self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url) + + def add_tags(self, tags: Sequence[str]) -> None: + self.add_array(Keys.General.TAGS, tags) + + def add_languages(self, languages: Sequence[str]) -> None: + self.add_array(Keys.General.LANGUAGES, languages) + + def add_datasets(self, datasets: Sequence[str]) -> None: + self.add_array(Keys.General.DATASETS, datasets) + + def add_tensor_data_layout(self, layout: str) -> None: + self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) def add_vocab_size(self, size: int) -> None: self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size) diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py new file mode 100644 index 000000000..be297f242 --- /dev/null +++ b/gguf-py/gguf/metadata.py @@ -0,0 +1,485 @@ +from __future__ import annotations + +import re +import json +import yaml +import logging +from pathlib import Path +from typing import Any, Literal, Optional +from dataclasses import dataclass + +from .constants import Keys + +import gguf + +logger = logging.getLogger("metadata") + + +@dataclass +class Metadata: + # Authorship Metadata to be written to GGUF KV Store + name: Optional[str] = None + author: Optional[str] = None + version: Optional[str] = None + organization: Optional[str] = None + finetune: Optional[str] = None + basename: Optional[str] = None + description: Optional[str] = None + quantized_by: Optional[str] = None + size_label: Optional[str] = None + url: Optional[str] = None + doi: Optional[str] = None + uuid: Optional[str] = None + repo_url: Optional[str] = None + source_url: Optional[str] = None + source_doi: Optional[str] = None + source_uuid: Optional[str] = None + source_repo_url: Optional[str] = None + license: Optional[str] = None + license_name: Optional[str] = None + license_link: Optional[str] = None + base_models: Optional[list[dict]] = None + tags: Optional[list[str]] = None + languages: Optional[list[str]] = None + datasets: Optional[list[str]] = None + + @staticmethod + def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata: + # This grabs as many contextual authorship metadata as possible from the model repository + # making any conversion as required to match the gguf kv store metadata format + # as well as giving users the ability to override any authorship metadata that may be incorrect + + # Create a new Metadata instance + metadata = Metadata() + + model_card = Metadata.load_model_card(model_path) + hf_params = Metadata.load_hf_parameters(model_path) + + # heuristics + metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params) + + # Metadata Override File Provided + # This is based on LLM_KV_NAMES mapping in llama.cpp + metadata_override = Metadata.load_metadata_override(metadata_override_path) + + metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author) + metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version) + metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization) + + metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune) + metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename) + + metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description) + metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by) + + metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label) + metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name) + metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link) + + metadata.url = metadata_override.get(Keys.General.URL, metadata.url) + metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi) + metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid) + metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url) + + metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url) + metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi) + metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid) + metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url) + + # Base Models is received here as an array of models + metadata.base_models = metadata_override.get("general.base_models", metadata.base_models) + + metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags) + metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages) + metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets) + + # Direct Metadata Override (via direct cli argument) + if model_name is not None: + metadata.name = model_name + + return metadata + + @staticmethod + def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]: + if metadata_override_path is None or not metadata_override_path.is_file(): + return {} + + with open(metadata_override_path, "r", encoding="utf-8") as f: + return json.load(f) + + @staticmethod + def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]: + if model_path is None or not model_path.is_dir(): + return {} + + model_card_path = model_path / "README.md" + + if not model_card_path.is_file(): + return {} + + # The model card metadata is assumed to always be in YAML + # ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473 + with open(model_card_path, "r", encoding="utf-8") as f: + if f.readline() == "---\n": + raw = f.read().partition("---\n")[0] + data = yaml.safe_load(raw) + if isinstance(data, dict): + return data + else: + logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict") + return {} + else: + return {} + + @staticmethod + def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]: + if model_path is None or not model_path.is_dir(): + return {} + + config_path = model_path / "config.json" + + if not config_path.is_file(): + return {} + + with open(config_path, "r", encoding="utf-8") as f: + return json.load(f) + + @staticmethod + def id_to_title(string): + # Convert capitalization into title form unless acronym or version number + return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()]) + + @staticmethod + def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]: + # Huggingface often store model id as '/' + # so let's parse it and apply some heuristics if possible for model name components + + if model_id is None: + # model ID missing + return None, None, None, None, None, None + + if ' ' in model_id: + # model ID is actually a normal human sentence + # which means its most likely a normal model name only + # not part of the hugging face naming standard, but whatever + return model_id, None, None, None, None, None + + if '/' in model_id: + # model ID (huggingface style) + org_component, model_full_name_component = model_id.split('/', 1) + else: + # model ID but missing org components + org_component, model_full_name_component = None, model_id + + # Check if we erroneously matched against './' or '../' etc... + if org_component is not None and org_component[0] == '.': + org_component = None + + name_parts: list[str] = model_full_name_component.split('-') + name_types: list[ + set[Literal["basename", "size_label", "finetune", "version", "type"]] + ] = [set() for _ in name_parts] + + # Annotate the name + for i, part in enumerate(name_parts): + # Version + if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE): + name_types[i].add("version") + # Quant type (should not be there for base models, but still annotated) + elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE): + name_types[i].add("type") + name_parts[i] = part.upper() + # Model size + elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE): + part = part.replace("_", ".") + # Handle weird bloom-7b1 notation + if part[-1].isdecimal(): + part = part[:-2] + "." + part[-1] + part[-2] + # Normalize the size suffixes + if len(part) > 1 and part[-2].isdecimal(): + if part[-1] in "kmbt": + part = part[:-1] + part[-1].upper() + if total_params != 0: + try: + label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1])) + # Only use it as a size label if it's close or bigger than the model size + # Note that LoRA adapters don't necessarily include all layers, + # so this is why bigger label sizes are accepted. + # Do not use the size label when it's smaller than 1/8 of the model size + if (total_params < 0 and label_params < abs(total_params) // 8) or ( + # Check both directions when the current model isn't a LoRA adapter + total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8 + ): + # Likely a context length + name_types[i].add("finetune") + # Lowercase the size when it's a context length + part = part[:-1] + part[-1].lower() + except ValueError: + # Failed to convert the size label to float, use it anyway + pass + if len(name_types[i]) == 0: + name_types[i].add("size_label") + name_parts[i] = part + # Some easy to recognize finetune names + elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE): + name_types[i].add("finetune") + if part.lower() == "lora": + name_parts[i] = "LoRA" + + at_start = True + # Find the basename through the annotated name + for part, t in zip(name_parts, name_types): + if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t): + t.add("basename") + else: + if at_start: + at_start = False + if len(t) == 0: + t.add("finetune") + + # Remove the basename annotation from trailing version + for part, t in zip(reversed(name_parts), reversed(name_types)): + if "basename" in t: + if len(t) > 1: + t.remove("basename") + else: + break + + basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None + size_label = "-".join(s for s, t in zip(name_parts, name_types) if "size_label" in t) or None + finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None + # TODO: should the basename version always be excluded? + # TODO: should multiple versions be joined together? + version = ([v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t] or [None])[-1] + + if size_label is None and finetune is None and version is None: + # Too ambiguous, output nothing + basename = None + + return model_full_name_component, org_component, basename, finetune, version, size_label + + @staticmethod + def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata: + # Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 + + # Model Card Heuristics + ######################## + if model_card is not None: + + if "model_name" in model_card and metadata.name is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.name = model_card.get("model_name") + + if "model_creator" in model_card and metadata.author is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.author = model_card.get("model_creator") + + if "model_type" in model_card and metadata.basename is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.basename = model_card.get("model_type") + + if "base_model" in model_card: + # This represents the parent models that this is based on + # Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges) + # Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md + metadata_base_models = [] + base_model_value = model_card.get("base_model", None) + + if base_model_value is not None: + if isinstance(base_model_value, str): + metadata_base_models.append(base_model_value) + elif isinstance(base_model_value, list): + metadata_base_models.extend(base_model_value) + + if metadata.base_models is None: + metadata.base_models = [] + + for model_id in metadata_base_models: + # NOTE: model size of base model is assumed to be similar to the size of the current model + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + base_model = {} + if model_full_name_component is not None: + base_model["name"] = Metadata.id_to_title(model_full_name_component) + if org_component is not None: + base_model["organization"] = Metadata.id_to_title(org_component) + if version is not None: + base_model["version"] = version + if org_component is not None and model_full_name_component is not None: + base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}" + metadata.base_models.append(base_model) + + if "license" in model_card and metadata.license is None: + metadata.license = model_card.get("license") + + if "license_name" in model_card and metadata.license_name is None: + metadata.license_name = model_card.get("license_name") + + if "license_link" in model_card and metadata.license_link is None: + metadata.license_link = model_card.get("license_link") + + tags_value = model_card.get("tags", None) + if tags_value is not None: + + if metadata.tags is None: + metadata.tags = [] + + if isinstance(tags_value, str): + metadata.tags.append(tags_value) + elif isinstance(tags_value, list): + metadata.tags.extend(tags_value) + + pipeline_tags_value = model_card.get("pipeline_tag", None) + if pipeline_tags_value is not None: + + if metadata.tags is None: + metadata.tags = [] + + if isinstance(pipeline_tags_value, str): + metadata.tags.append(pipeline_tags_value) + elif isinstance(pipeline_tags_value, list): + metadata.tags.extend(pipeline_tags_value) + + language_value = model_card.get("languages", model_card.get("language", None)) + if language_value is not None: + + if metadata.languages is None: + metadata.languages = [] + + if isinstance(language_value, str): + metadata.languages.append(language_value) + elif isinstance(language_value, list): + metadata.languages.extend(language_value) + + dataset_value = model_card.get("datasets", model_card.get("dataset", None)) + if dataset_value is not None: + + if metadata.datasets is None: + metadata.datasets = [] + + if isinstance(dataset_value, str): + metadata.datasets.append(dataset_value) + elif isinstance(dataset_value, list): + metadata.datasets.extend(dataset_value) + + # Hugging Face Parameter Heuristics + #################################### + + if hf_params is not None: + + hf_name_or_path = hf_params.get("_name_or_path") + if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1: + # Use _name_or_path only if its actually a model name and not some computer path + # e.g. 'meta-llama/Llama-2-7b-hf' + model_id = hf_name_or_path + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + if metadata.name is None and model_full_name_component is not None: + metadata.name = Metadata.id_to_title(model_full_name_component) + if metadata.organization is None and org_component is not None: + metadata.organization = Metadata.id_to_title(org_component) + if metadata.basename is None and basename is not None: + metadata.basename = basename + if metadata.finetune is None and finetune is not None: + metadata.finetune = finetune + if metadata.version is None and version is not None: + metadata.version = version + if metadata.size_label is None and size_label is not None: + metadata.size_label = size_label + + # Directory Folder Name Fallback Heuristics + ############################################ + if model_path is not None: + model_id = model_path.name + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + if metadata.name is None and model_full_name_component is not None: + metadata.name = Metadata.id_to_title(model_full_name_component) + if metadata.organization is None and org_component is not None: + metadata.organization = Metadata.id_to_title(org_component) + if metadata.basename is None and basename is not None: + metadata.basename = basename + if metadata.finetune is None and finetune is not None: + metadata.finetune = finetune + if metadata.version is None and version is not None: + metadata.version = version + if metadata.size_label is None and size_label is not None: + metadata.size_label = size_label + + return metadata + + def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter): + assert self.name is not None + gguf_writer.add_name(self.name) + + if self.author is not None: + gguf_writer.add_author(self.author) + if self.version is not None: + gguf_writer.add_version(self.version) + if self.organization is not None: + gguf_writer.add_organization(self.organization) + + if self.finetune is not None: + gguf_writer.add_finetune(self.finetune) + if self.basename is not None: + gguf_writer.add_basename(self.basename) + + if self.description is not None: + gguf_writer.add_description(self.description) + if self.quantized_by is not None: + gguf_writer.add_quantized_by(self.quantized_by) + + if self.size_label is not None: + gguf_writer.add_size_label(self.size_label) + + if self.license is not None: + gguf_writer.add_license(self.license) + if self.license_name is not None: + gguf_writer.add_license_name(self.license_name) + if self.license_link is not None: + gguf_writer.add_license_link(self.license_link) + + if self.url is not None: + gguf_writer.add_url(self.url) + if self.doi is not None: + gguf_writer.add_doi(self.doi) + if self.uuid is not None: + gguf_writer.add_uuid(self.uuid) + if self.repo_url is not None: + gguf_writer.add_repo_url(self.repo_url) + + if self.source_url is not None: + gguf_writer.add_source_url(self.source_url) + if self.source_doi is not None: + gguf_writer.add_source_doi(self.source_doi) + if self.source_uuid is not None: + gguf_writer.add_source_uuid(self.source_uuid) + if self.source_repo_url is not None: + gguf_writer.add_source_repo_url(self.source_repo_url) + + if self.base_models is not None: + gguf_writer.add_base_model_count(len(self.base_models)) + for key, base_model_entry in enumerate(self.base_models): + if "name" in base_model_entry: + gguf_writer.add_base_model_name(key, base_model_entry["name"]) + if "author" in base_model_entry: + gguf_writer.add_base_model_author(key, base_model_entry["author"]) + if "version" in base_model_entry: + gguf_writer.add_base_model_version(key, base_model_entry["version"]) + if "organization" in base_model_entry: + gguf_writer.add_base_model_organization(key, base_model_entry["organization"]) + if "url" in base_model_entry: + gguf_writer.add_base_model_url(key, base_model_entry["url"]) + if "doi" in base_model_entry: + gguf_writer.add_base_model_doi(key, base_model_entry["doi"]) + if "uuid" in base_model_entry: + gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"]) + if "repo_url" in base_model_entry: + gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"]) + + if self.tags is not None: + gguf_writer.add_tags(self.tags) + if self.languages is not None: + gguf_writer.add_languages(self.languages) + if self.datasets is not None: + gguf_writer.add_datasets(self.datasets) diff --git a/gguf-py/gguf/utility.py b/gguf-py/gguf/utility.py new file mode 100644 index 000000000..ef76831b5 --- /dev/null +++ b/gguf-py/gguf/utility.py @@ -0,0 +1,69 @@ +from __future__ import annotations + +from typing import Literal + + +def fill_templated_filename(filename: str, output_type: str | None) -> str: + # Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf' + ftype_lowercase: str = output_type.lower() if output_type is not None else "" + ftype_uppercase: str = output_type.upper() if output_type is not None else "" + return filename.format(ftype_lowercase, + outtype=ftype_lowercase, ftype=ftype_lowercase, + OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase) + + +def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str: + if model_params_count > 1e12 : + # Trillions Of Parameters + scaled_model_params = model_params_count * 1e-12 + scale_suffix = "T" + elif model_params_count > 1e9 : + # Billions Of Parameters + scaled_model_params = model_params_count * 1e-9 + scale_suffix = "B" + elif model_params_count > 1e6 : + # Millions Of Parameters + scaled_model_params = model_params_count * 1e-6 + scale_suffix = "M" + else: + # Thousands Of Parameters + scaled_model_params = model_params_count * 1e-3 + scale_suffix = "K" + + fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0) + + return f"{scaled_model_params:.{fix}f}{scale_suffix}" + + +def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str: + + if expert_count > 0: + pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2) + size_class = f"{expert_count}x{pretty_size}" + else: + size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2) + + return size_class + + +def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str: + # Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention + + if base_name is not None: + name = base_name.strip().title().replace(' ', '-').replace('/', '-') + elif model_name is not None: + name = model_name.strip().title().replace(' ', '-').replace('/', '-') + else: + name = "ggml-model" + + parameters = f"-{size_label}" if size_label is not None else "" + + finetune = f"-{finetune_string.strip().title().replace(' ', '-')}" if finetune_string is not None else "" + + version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else "" + + encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else "" + + kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else "" + + return f"{name}{parameters}{finetune}{version}{encoding}{kind}" diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 62129126b..19f6761e2 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -22,6 +22,7 @@ classifiers = [ python = ">=3.8" numpy = ">=1.17" tqdm = ">=4.27" +pyyaml = ">=5.1" [tool.poetry.dev-dependencies] pytest = "^5.2" diff --git a/gguf-py/tests/__init__.py b/gguf-py/tests/__init__.py new file mode 100644 index 000000000..d23ff9cb7 --- /dev/null +++ b/gguf-py/tests/__init__.py @@ -0,0 +1 @@ +from .test_metadata import * diff --git a/gguf-py/tests/test_gguf.py b/gguf-py/tests/test_gguf.py deleted file mode 100644 index 76b52181e..000000000 --- a/gguf-py/tests/test_gguf.py +++ /dev/null @@ -1,7 +0,0 @@ -import gguf # noqa: F401 # pyright: ignore[reportUnusedImport] - -# TODO: add tests - - -def test_write_gguf() -> None: - pass diff --git a/gguf-py/tests/test_metadata.py b/gguf-py/tests/test_metadata.py new file mode 100755 index 000000000..3fac82188 --- /dev/null +++ b/gguf-py/tests/test_metadata.py @@ -0,0 +1,158 @@ +#!/usr/bin/env python3 + +import unittest +from pathlib import Path +import os +import sys + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +import gguf + + +class TestMetadataMethod(unittest.TestCase): + + def test_id_to_title(self): + self.assertEqual(gguf.Metadata.id_to_title("Mixtral-8x7B-Instruct-v0.1"), "Mixtral 8x7B Instruct v0.1") + self.assertEqual(gguf.Metadata.id_to_title("Meta-Llama-3-8B"), "Meta Llama 3 8B") + self.assertEqual(gguf.Metadata.id_to_title("hermes-2-pro-llama-3-8b-DPO"), "Hermes 2 Pro Llama 3 8b DPO") + + def test_get_model_id_components(self): + # This is the basic standard form with organization marker + self.assertEqual(gguf.Metadata.get_model_id_components("Mistral/Mixtral-8x7B-Instruct-v0.1"), + ('Mixtral-8x7B-Instruct-v0.1', "Mistral", 'Mixtral', 'Instruct', 'v0.1', '8x7B')) + + # Similar to basic standard form but without organization marker + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct-v0.1"), + ('Mixtral-8x7B-Instruct-v0.1', None, 'Mixtral', 'Instruct', 'v0.1', '8x7B')) + + # Missing version + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct"), + ('Mixtral-8x7B-Instruct', None, 'Mixtral', 'Instruct', None, '8x7B')) + + # Missing finetune + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-v0.1"), + ('Mixtral-8x7B-v0.1', None, 'Mixtral', None, 'v0.1', '8x7B')) + + # Base name and size label only + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B"), + ('Mixtral-8x7B', None, 'Mixtral', None, None, '8x7B')) + + # Base name and version only + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-v0.1"), + ('Mixtral-v0.1', None, 'Mixtral', None, 'v0.1', None)) + + ## Edge Cases ## + + # This is too ambiguous... best to err on caution and output nothing + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral"), + ('Mixtral', None, None, None, None, None)) + + # Basename has numbers mixed in and also size label provided. Must avoid capturing number in basename + self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"), + ('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B')) + + # Can't detect all non standard form in a heuristically safe way... best to err in caution and output nothing... + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"), + ('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B')) + + # Capture 'sub size labels' e.g. A14B in '57B-A14B' usually refers to activated params/weight count + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-57B-A14B-Instruct"), + ('Qwen2-57B-A14B-Instruct', None, 'Qwen2', 'Instruct', None, '57B-A14B')) + + # Check that it can handle a real model id with no version code + # Note that 4k in this string is non standard and microsoft were referring to context length rather than weight count + self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Phi-3-mini-4k-instruct", 4 * 10**9), + ('Phi-3-mini-4k-instruct', 'microsoft', 'Phi-3', '4k-instruct', None, 'mini')) + + # There is some legitimate models with only thousands of parameters + self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3), + ('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K')) + + # None standard and not easy to disambiguate + self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"), + ('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None)) + + # This is a real model_id where they append 2DPO to refer to Direct Preference Optimization + self.assertEqual(gguf.Metadata.get_model_id_components("crestf411/daybreak-kunoichi-2dpo-7b"), + ('daybreak-kunoichi-2dpo-7b', 'crestf411', 'daybreak-kunoichi', '2dpo', None, '7B')) + + # This is a real model id where the weight size has a decimal point + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-0.5B-Instruct"), + ('Qwen2-0.5B-Instruct', None, 'Qwen2', 'Instruct', None, '0.5B')) + + # Uses an underscore in the size label + self.assertEqual(gguf.Metadata.get_model_id_components("smallcloudai/Refact-1_6B-fim"), + ('Refact-1_6B-fim', 'smallcloudai', 'Refact', 'fim', None, '1.6B')) + + # Uses Iter3 for the version + self.assertEqual(gguf.Metadata.get_model_id_components("UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3"), + ('Gemma-2-9B-It-SPPO-Iter3', 'UCLA-AGI', 'Gemma-2', 'It-SPPO', 'Iter3', '9B')) + + # Has two potential versions in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Hermes-2-Theta-Llama-3-8B"), + ('Hermes-2-Theta-Llama-3-8B', 'NousResearch', 'Hermes-2-Theta-Llama-3', None, None, '8B')) + + # Potential version in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("SeaLLMs/SeaLLMs-v3-7B-Chat"), + ('SeaLLMs-v3-7B-Chat', 'SeaLLMs', 'SeaLLMs-v3', 'Chat', None, '7B')) + + # Underscore in the basename, and 1m for the context size + self.assertEqual(gguf.Metadata.get_model_id_components("internlm/internlm2_5-7b-chat-1m", 7 * 10**9), + ('internlm2_5-7b-chat-1m', 'internlm', 'internlm2_5', 'chat-1m', None, '7B')) + + # Version before the finetune name + self.assertEqual(gguf.Metadata.get_model_id_components("pszemraj/jamba-900M-v0.13-KIx2"), + ('jamba-900M-v0.13-KIx2', 'pszemraj', 'jamba', 'KIx2', 'v0.13', '900M')) + + # TODO: hf suffix which could be ignored but isn't + self.assertEqual(gguf.Metadata.get_model_id_components("state-spaces/mamba-2.8b-hf"), + ('mamba-2.8b-hf', 'state-spaces', 'mamba', 'hf', None, '2.8B')) + + # Two sizes, don't merge them, the other is the number of tokens on which it was trained + self.assertEqual(gguf.Metadata.get_model_id_components("abacaj/llama-161M-100B", 161 * 10**6), + ('llama-161M-100B', 'abacaj', 'llama', '100b', None, '161M')) + + # It's a trap, there is no size label + self.assertEqual(gguf.Metadata.get_model_id_components("SparseLLM/relu-100B", 1340 * 10**6), + ('relu-100B', 'SparseLLM', 'relu', '100b', None, None)) + + # Weird size notation + self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"), + ('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B')) + + def test_apply_metadata_heuristic_from_model_card(self): + model_card = { + 'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'], + 'model-index': [{'name': 'Mixtral-8x7B-Instruct-v0.1', 'results': []}], + 'language': ['en'], + 'datasets': ['teknium/OpenHermes-2.5'], + 'widget': [{'example_title': 'Hermes 2 Pro', 'messages': [{'role': 'system', 'content': 'You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.'}, {'role': 'user', 'content': 'Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.'}]}], + 'base_model': ["EmbeddedLLM/Mistral-7B-Merge-14-v0", "janai-hq/trinity-v1"] + } + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None) + expect = gguf.Metadata() + expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': 'v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}] + expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'] + expect.languages=['en'] + expect.datasets=['teknium/OpenHermes-2.5'] + + self.assertEqual(got, expect) + + def test_apply_metadata_heuristic_from_hf_parameters(self): + hf_params = {"_name_or_path": "./hermes-2-pro-llama-3-8b-DPO"} + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=hf_params, model_path=None) + expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B') + self.assertEqual(got, expect) + + def test_apply_metadata_heuristic_from_model_dir(self): + model_dir_path = Path("./hermes-2-pro-llama-3-8b-DPO") + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=None, model_path=model_dir_path) + expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B') + self.assertEqual(got, expect) + + +if __name__ == "__main__": + unittest.main()