diff --git a/README.md b/README.md index d75a83712..462b1b180 100644 --- a/README.md +++ b/README.md @@ -122,6 +122,8 @@ Typically finetunes of the base models below are supported as well. - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) +(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md)) + **Multimodal models:** - [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md new file mode 100644 index 000000000..3581f3e65 --- /dev/null +++ b/docs/HOWTO-add-model.md @@ -0,0 +1,117 @@ +## Add a new model architecture to `llama.cpp` + +Adding a model requires few steps: + +1. Convert the model to GGUF +2. Define the model architecture in `llama.cpp` +3. Build the GGML graph implementation + +After following these steps, you can open PR. + +Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially: +- [main](../examples/main) +- [imatrix](../examples/imatrix) +- [quantize](../examples/quantize) +- [server](../examples/server) + +### 1. Convert the model to GGUF + +This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library. +Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py). + +The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors. + +The required steps to implement for an HF model are: + +1. Define the model `Model.register` annotation in a new `Model` subclass, example: + +```python +@Model.register("MyModelForCausalLM") +class MyModel(Model): + model_arch = gguf.MODEL_ARCH.GROK +``` + +2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py) + +Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`. + +Example for `falcon` model: +```python + MODEL_ARCH.FALCON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_NORM_2, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ] +``` + +3. Map the original tensor names to the standardize equivalent in GGUF + +As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist. + +Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file. + +If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it. + +Example for the normalization tensor in attention layers: + +```python +block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { + # Attention norm + MODEL_TENSOR.ATTN_NORM: ( + "gpt_neox.layers.{bid}.input_layernorm", # gptneox + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen + "transformer.blocks.{bid}.norm_1", # mpt + ... + ) +} +``` + +`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF. + +Depending on the model configuration, tokenizer, code and tensors layout, you will have to override: +- `Model#set_gguf_parameters` +- `Model#set_vocab` +- `Model#write_tensors` + +NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights. + +### 2. Define the model architecture in `llama.cpp` + +The model params and tensors layout must be defined in `llama.cpp`: +1. Define a new `llm_arch` +2. Define the tensors layout in `LLM_TENSOR_NAMES` +3. Add any non standard metadata in `llm_load_hparams` +4. Create the tensors for inference in `llm_load_tensors` +5. If the model has a RoPE operation, add the rope type in `llama_rope_type` + +NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions. + +### 3. Build the GGML graph implementation + +This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`. + +Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`. + +When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR. + +## GGUF specification + +https://github.com/ggerganov/ggml/blob/master/docs/gguf.md + +## Resources + +- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268 +- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009 +- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283 +- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406 +- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423 +- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204 +- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491 +- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515 +- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948