mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 04:00:16 +00:00
Merge branch 'master' into gg/per-layer-kv
ggml-ci
This commit is contained in:
commit
680a99e792
@ -2,33 +2,14 @@
|
||||
|
||||
import PackageDescription
|
||||
|
||||
#if arch(arm) || arch(arm64)
|
||||
let platforms: [SupportedPlatform]? = [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
]
|
||||
let exclude: [String] = []
|
||||
let resources: [Resource] = [
|
||||
.process("ggml-metal.metal")
|
||||
]
|
||||
let additionalSources: [String] = ["ggml-metal.m"]
|
||||
let additionalSettings: [CSetting] = [
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL")
|
||||
]
|
||||
#else
|
||||
let platforms: [SupportedPlatform]? = nil
|
||||
let exclude: [String] = ["ggml-metal.metal"]
|
||||
let resources: [Resource] = []
|
||||
let additionalSources: [String] = []
|
||||
let additionalSettings: [CSetting] = []
|
||||
#endif
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: platforms,
|
||||
platforms: [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
],
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
@ -36,25 +17,30 @@ let package = Package(
|
||||
.target(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: exclude,
|
||||
exclude: [],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
] + additionalSources,
|
||||
resources: resources,
|
||||
"ggml-metal.m",
|
||||
],
|
||||
resources: [
|
||||
.process("ggml-metal.metal")
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL"),
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
] + additionalSettings,
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
|
@ -278,6 +278,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
} else if (arg == "--samplers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = parse_samplers_input(argv[i]);
|
||||
} else if (arg == "--sampling-seq") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = argv[i];
|
||||
} else if (arg == "--top-p") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -682,6 +694,47 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(sparams.grammar)
|
||||
);
|
||||
} else if (arg == "--override-kv") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
char * sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// Parse args for logging parameters
|
||||
} else if ( log_param_single_parse( argv[i] ) ) {
|
||||
@ -725,6 +778,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
params.kv_overrides.emplace_back(llama_model_kv_override());
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -765,6 +823,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
|
||||
@ -858,6 +918,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
|
||||
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
||||
printf(" path under which to save YAML logs (no logging if unset)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
@ -894,6 +957,48 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
//
|
||||
// String parsing
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input) {
|
||||
std::string output = "";
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, char> samplers_symbols {
|
||||
{"top_k", 'k'},
|
||||
{"top-k", 'k'},
|
||||
{"top_p", 'p'},
|
||||
{"top-p", 'p'},
|
||||
{"nucleus", 'p'},
|
||||
{"typical_p", 'y'},
|
||||
{"typical-p", 'y'},
|
||||
{"typical", 'y'},
|
||||
{"min_p", 'm'},
|
||||
{"min-p", 'm'},
|
||||
{"tfs_z", 'f'},
|
||||
{"tfs-z", 'f'},
|
||||
{"tfs", 'f'},
|
||||
{"temp", 't'},
|
||||
{"temperature",'t'}
|
||||
};
|
||||
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
|
||||
size_t separator = input.find(';');
|
||||
while (separator != input.npos) {
|
||||
std::string name = input.substr(0,separator);
|
||||
input = input.substr(separator+1);
|
||||
separator = input.find(';');
|
||||
|
||||
if (samplers_symbols.find(name) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[name];
|
||||
}
|
||||
}
|
||||
if (samplers_symbols.find(input) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[input];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
@ -908,6 +1013,12 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
@ -86,6 +86,8 @@ struct gpt_params {
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
@ -144,6 +146,12 @@ std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// String parsing
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
@ -190,7 +190,7 @@ namespace grammar_parser {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
|
@ -99,6 +99,56 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto s : params.samplers_sequence) {
|
||||
switch (s) {
|
||||
case 'k': result += "-> top_k "; break;
|
||||
case 'f': result += "-> tfs_z "; break;
|
||||
case 'y': result += "-> typical_p "; break;
|
||||
case 'p': result += "-> top_p "; break;
|
||||
case 'm': result += "-> min_p "; break;
|
||||
case 't': result += "-> temp "; break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
result += "-> mirostat ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// no reasons to expose this function in header
|
||||
static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
const llama_sampling_params & params,
|
||||
llama_token_data_array & cur_p,
|
||||
size_t & min_keep) {
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::string & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
@ -109,11 +159,6 @@ llama_token llama_sampling_sample(
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
@ -188,12 +233,7 @@ llama_token llama_sampling_sample(
|
||||
// temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
|
||||
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
||||
llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep);
|
||||
llama_sample_temp (ctx_main, &cur_p, temp);
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
|
||||
|
@ -10,22 +10,23 @@
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
@ -80,6 +81,9 @@ std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama
|
||||
// Print sampling parameters into a string
|
||||
std::string llama_sampling_print(const llama_sampling_params & params);
|
||||
|
||||
// Print sampling order into a string
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
|
@ -215,9 +215,10 @@ print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end
|
||||
llama_print_timings(context)
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0 ..< tokenCount {
|
||||
swiftTokens.append(tokens[Int(i)])
|
||||
|
@ -11,6 +11,8 @@ actor LlamaContext {
|
||||
private var context: OpaquePointer
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
/// This variable is used to store temporarily invalid cchars
|
||||
private var temporary_invalid_cchars: [CChar]
|
||||
|
||||
var n_len: Int32 = 512
|
||||
var n_cur: Int32 = 0
|
||||
@ -21,6 +23,7 @@ actor LlamaContext {
|
||||
self.context = context
|
||||
self.tokens_list = []
|
||||
self.batch = llama_batch_init(512, 0, 1)
|
||||
self.temporary_invalid_cchars = []
|
||||
}
|
||||
|
||||
deinit {
|
||||
@ -61,6 +64,7 @@ actor LlamaContext {
|
||||
print("attempting to complete \"\(text)\"")
|
||||
|
||||
tokens_list = tokenize(text: text, add_bos: true)
|
||||
temporary_invalid_cchars = []
|
||||
|
||||
let n_ctx = llama_n_ctx(context)
|
||||
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
|
||||
@ -72,7 +76,7 @@ actor LlamaContext {
|
||||
}
|
||||
|
||||
for id in tokens_list {
|
||||
print(token_to_piece(token: id))
|
||||
print(String(cString: token_to_piece(token: id) + [0]))
|
||||
}
|
||||
|
||||
// batch = llama_batch_init(512, 0) // done in init()
|
||||
@ -115,10 +119,25 @@ actor LlamaContext {
|
||||
|
||||
if new_token_id == llama_token_eos(context) || n_cur == n_len {
|
||||
print("\n")
|
||||
return ""
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
return new_token_str
|
||||
}
|
||||
|
||||
let new_token_str = token_to_piece(token: new_token_id)
|
||||
let new_token_cchars = token_to_piece(token: new_token_id)
|
||||
temporary_invalid_cchars.append(contentsOf: new_token_cchars)
|
||||
let new_token_str: String
|
||||
if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
|
||||
temporary_invalid_cchars.removeAll()
|
||||
new_token_str = string
|
||||
} else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
|
||||
// in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
|
||||
let string = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
new_token_str = string
|
||||
} else {
|
||||
new_token_str = ""
|
||||
}
|
||||
print(new_token_str)
|
||||
// tokens_list.append(new_token_id)
|
||||
|
||||
@ -144,12 +163,14 @@ actor LlamaContext {
|
||||
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||
let utf8Count = text.utf8.count
|
||||
let n_tokens = utf8Count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, false)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
|
||||
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0..<tokenCount {
|
||||
@ -161,7 +182,8 @@ actor LlamaContext {
|
||||
return swiftTokens
|
||||
}
|
||||
|
||||
private func token_to_piece(token: llama_token) -> String {
|
||||
/// - note: The result does not contain null-terminator
|
||||
private func token_to_piece(token: llama_token) -> [CChar] {
|
||||
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
|
||||
result.initialize(repeating: Int8(0), count: 8)
|
||||
defer {
|
||||
@ -175,10 +197,12 @@ actor LlamaContext {
|
||||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
_ = llama_token_to_piece(model, token, newResult, -nTokens)
|
||||
return String(cString: newResult)
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
return String(cString: result)
|
||||
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
|
||||
return Array(bufferPointer)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -437,6 +437,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
|
@ -2383,6 +2383,7 @@ json oaicompat_completion_params_parse(
|
||||
|
||||
// Map OpenAI parameters to llama.cpp parameters
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
||||
llama_params["top_k"] = json_value(body, "top_k", 40);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
||||
|
@ -75,7 +75,7 @@ int main(int argc, char ** argv) {
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -203,8 +203,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
if (!params.use_color) {
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (id == llama_token_eos(model_tgt)) {
|
||||
has_eos = true;
|
||||
@ -236,10 +237,18 @@ int main(int argc, char ** argv) {
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
if (params.use_color) {
|
||||
// Color token according to its origin sequence
|
||||
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (params.use_color) {
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
|
||||
|
@ -1295,10 +1295,6 @@ int main(int argc, char ** argv) {
|
||||
opt_cb_data.last_save_iter = opt->iter;
|
||||
}
|
||||
|
||||
if (alloc) {
|
||||
ggml_allocr_free(alloc);
|
||||
}
|
||||
|
||||
ggml_free(opt->ctx);
|
||||
free_train_state(train);
|
||||
ggml_free(model.ctx);
|
||||
|
390
llama.cpp
390
llama.cpp
@ -74,6 +74,7 @@
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <type_traits>
|
||||
#include <unordered_map>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
@ -590,21 +591,6 @@ struct LLM_TN {
|
||||
// gguf helpers
|
||||
//
|
||||
|
||||
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
|
||||
do { \
|
||||
const std::string skey(key); \
|
||||
const int kid = gguf_find_key(ctx, skey.c_str()); \
|
||||
if (kid >= 0) { \
|
||||
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
|
||||
if (ktype != (type)) { \
|
||||
throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
|
||||
} \
|
||||
(dst) = func(ctx, kid); \
|
||||
} else if (req) { \
|
||||
throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
static std::map<int8_t, std::string> LLAMA_ROPE_SCALING_TYPES = {
|
||||
{ LLAMA_ROPE_SCALING_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_LINEAR, "linear" },
|
||||
@ -638,7 +624,7 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
|
||||
}
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(struct gguf_context * ctx_gguf, int i) {
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
|
||||
switch (type) {
|
||||
@ -1809,6 +1795,169 @@ static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
|
||||
return buf;
|
||||
}
|
||||
|
||||
namespace GGUFMeta {
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
|
||||
struct GKV_Base_Type {
|
||||
static constexpr gguf_type gt = gt_;
|
||||
|
||||
static T getter(const gguf_context * ctx, const int kid) {
|
||||
return gfun(ctx, kid);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T> struct GKV_Base;
|
||||
|
||||
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
|
||||
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
|
||||
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
|
||||
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
|
||||
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
|
||||
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
|
||||
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
|
||||
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
|
||||
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
|
||||
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
|
||||
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
|
||||
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
|
||||
|
||||
template<> struct GKV_Base<std::string> {
|
||||
static constexpr gguf_type gt = GGUF_TYPE_STRING;
|
||||
|
||||
static std::string getter(const gguf_context * ctx, const int kid) {
|
||||
return gguf_get_val_str(ctx, kid);
|
||||
}
|
||||
};
|
||||
|
||||
struct ArrayInfo{
|
||||
const gguf_type gt;
|
||||
const size_t length;
|
||||
const void * data;
|
||||
};
|
||||
|
||||
template<> struct GKV_Base<ArrayInfo> {
|
||||
public:
|
||||
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
|
||||
static ArrayInfo getter(const gguf_context *ctx, const int k) {
|
||||
return ArrayInfo {
|
||||
gguf_get_arr_type(ctx, k),
|
||||
size_t(gguf_get_arr_n(ctx, k)),
|
||||
gguf_get_arr_data(ctx, k),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class GKV: public GKV_Base<T> {
|
||||
GKV() = delete;
|
||||
|
||||
public:
|
||||
static T get_kv(const gguf_context * ctx, const int k) {
|
||||
const enum gguf_type kt = gguf_get_kv_type(ctx, k);
|
||||
|
||||
if (kt != GKV::gt) {
|
||||
throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
|
||||
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
|
||||
}
|
||||
return GKV::getter(ctx, k);
|
||||
}
|
||||
|
||||
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
|
||||
switch (ty) {
|
||||
case LLAMA_KV_OVERRIDE_BOOL: return "bool";
|
||||
case LLAMA_KV_OVERRIDE_INT: return "int";
|
||||
case LLAMA_KV_OVERRIDE_FLOAT: return "float";
|
||||
}
|
||||
return "unknown";
|
||||
}
|
||||
|
||||
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override *override) {
|
||||
if (!override) { return false; }
|
||||
if (override->tag == expected_type) {
|
||||
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
|
||||
__func__, override_type_to_str(override->tag), override->key);
|
||||
switch (override->tag) {
|
||||
case LLAMA_KV_OVERRIDE_BOOL: {
|
||||
printf("%s\n", override->bool_value ? "true" : "false");
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_INT: {
|
||||
printf("%" PRId64 "\n", override->int_value);
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_FLOAT: {
|
||||
printf("%.6f\n", override->float_value);
|
||||
} break;
|
||||
default:
|
||||
// Shouldn't be possible to end up here, but just in case...
|
||||
throw std::runtime_error(
|
||||
format("Unsupported attempt to override %s type for metadata key %s\n",
|
||||
override_type_to_str(override->tag), override->key));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
|
||||
__func__, override->key, override_type_to_str(expected_type), override_type_to_str(override->tag));
|
||||
return false;
|
||||
}
|
||||
|
||||
template<typename OT>
|
||||
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) {
|
||||
target = override->bool_value;
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename OT>
|
||||
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) {
|
||||
target = override->int_value;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template<typename OT>
|
||||
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
||||
try_override(T & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) {
|
||||
target = override->float_value;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template<typename OT>
|
||||
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
|
||||
try_override(T & target, const struct llama_model_kv_override *override) {
|
||||
(void)target;
|
||||
(void)override;
|
||||
if (!override) { return false; }
|
||||
// Currently, we should never end up here so it would be a bug if we do.
|
||||
throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
|
||||
override ? override->key : "NULL"));
|
||||
}
|
||||
|
||||
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override *override = nullptr) {
|
||||
if (try_override<T>(target, override)) {
|
||||
return true;
|
||||
}
|
||||
if (k < 0) { return false; }
|
||||
target = get_kv(ctx, k);
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override *override = nullptr) {
|
||||
return set(ctx, gguf_find_key(ctx, key), target, override);
|
||||
}
|
||||
|
||||
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override *override = nullptr) {
|
||||
return set(ctx, key.c_str(), target, override);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_model_loader {
|
||||
int n_kv = 0;
|
||||
int n_tensors = 0;
|
||||
@ -1824,21 +1973,34 @@ struct llama_model_loader {
|
||||
llama_fver fver;
|
||||
|
||||
std::unique_ptr<llama_mmap> mapping;
|
||||
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
|
||||
|
||||
struct gguf_context * ctx_gguf = NULL;
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
|
||||
llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
|
||||
std::string arch_name;
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
if (param_overrides_p != nullptr) {
|
||||
for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
|
||||
kv_overrides.insert({std::string(p->key), *p});
|
||||
}
|
||||
}
|
||||
|
||||
ctx_gguf = gguf_init_from_file(fname.c_str(), params);
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
|
||||
}
|
||||
|
||||
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
|
||||
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
|
||||
|
||||
n_kv = gguf_get_n_kv(ctx_gguf);
|
||||
n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
|
||||
@ -1906,6 +2068,7 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx_gguf, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
@ -1951,19 +2114,59 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||||
get_arr_n(const std::string & key, T & result, const bool required = true) {
|
||||
const int kid = gguf_find_key(ctx_gguf, key.c_str());
|
||||
|
||||
if (kid < 0) {
|
||||
if (required) {
|
||||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
struct GGUFMeta::ArrayInfo arr_info =
|
||||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
|
||||
|
||||
|
||||
result = arr_info.length;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||||
get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
|
||||
return get_arr_n(llm_kv(kid), result, required);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool get_key(const std::string & key, T & result, const bool required = true) {
|
||||
auto it = kv_overrides.find(key);
|
||||
|
||||
const struct llama_model_kv_override * override =
|
||||
it != kv_overrides.end() ? &it->second : nullptr;
|
||||
|
||||
const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
|
||||
|
||||
if (required && !found) {
|
||||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||||
}
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
|
||||
return get_key(llm_kv(kid), result, required);
|
||||
}
|
||||
|
||||
std::string get_arch_name() const {
|
||||
const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
std::string arch_name;
|
||||
GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
|
||||
return arch_name;
|
||||
}
|
||||
|
||||
enum llm_arch get_arch() const {
|
||||
const std::string arch_name = get_arch_name();
|
||||
|
||||
return llm_arch_from_string(arch_name);
|
||||
return llm_kv.arch;
|
||||
}
|
||||
|
||||
const char * get_tensor_name(int i) const {
|
||||
@ -2213,11 +2416,8 @@ static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
||||
static void llm_load_hparams(
|
||||
llama_model_loader & ml,
|
||||
llama_model & model) {
|
||||
struct gguf_context * ctx = ml.ctx_gguf;
|
||||
|
||||
const auto kv = LLM_KV(model.arch);
|
||||
|
||||
auto & hparams = model.hparams;
|
||||
const gguf_context * ctx = ml.ctx_gguf;
|
||||
|
||||
// get metadata as string
|
||||
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
|
||||
@ -2231,42 +2431,41 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// get general kv
|
||||
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
|
||||
|
||||
// get hparams kv
|
||||
GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
|
||||
GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
|
||||
GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
|
||||
GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
|
||||
GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
|
||||
GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
|
||||
ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
|
||||
ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
||||
ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
||||
ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
|
||||
ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
|
||||
ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv = hparams.n_head;
|
||||
GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
|
||||
ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
|
||||
|
||||
hparams.rope_finetuned = false;
|
||||
GGUF_GET_KEY(ctx, hparams.rope_finetuned, gguf_get_val_bool, GGUF_TYPE_BOOL, false,
|
||||
kv(LLM_KV_ROPE_SCALING_FINETUNED));
|
||||
bool rope_finetuned = false;
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
|
||||
hparams.rope_finetuned = rope_finetuned;
|
||||
|
||||
hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
|
||||
GGUF_GET_KEY(ctx, hparams.n_yarn_orig_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false,
|
||||
kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN));
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
|
||||
|
||||
// rope_freq_base (optional)
|
||||
hparams.rope_freq_base_train = 10000.0f;
|
||||
GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
|
||||
ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
|
||||
|
||||
std::string rope_scaling("linear");
|
||||
GGUF_GET_KEY(ctx, rope_scaling, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_ROPE_SCALING_TYPE));
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
|
||||
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
||||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
|
||||
|
||||
// rope_freq_scale (inverse of the kv) is optional
|
||||
float ropescale = 0.0f;
|
||||
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALING_FACTOR));
|
||||
if (ropescale == 0.0f) { // try the old key name
|
||||
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
||||
if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
|
||||
// try the old key name
|
||||
ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
|
||||
}
|
||||
hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
|
||||
|
||||
@ -2274,7 +2473,7 @@ static void llm_load_hparams(
|
||||
{
|
||||
hparams.n_rot = hparams.n_embd / hparams.n_head;
|
||||
|
||||
GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
|
||||
@ -2289,7 +2488,7 @@ static void llm_load_hparams(
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 26: model.type = e_model::MODEL_3B; break;
|
||||
@ -2303,7 +2502,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_FALCON:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
@ -2313,7 +2512,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 40: model.type = e_model::MODEL_13B; break;
|
||||
@ -2322,7 +2521,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
case 36: model.type = e_model::MODEL_3B; break;
|
||||
@ -2333,7 +2532,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_PERSIMMON:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 36: model.type = e_model::MODEL_8B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
@ -2341,7 +2540,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_REFACT:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_1B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
@ -2349,7 +2548,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_BLOOM:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
@ -2364,9 +2563,9 @@ static void llm_load_hparams(
|
||||
{
|
||||
hparams.f_clamp_kqv = 0.0f;
|
||||
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
|
||||
GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
@ -2376,7 +2575,7 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_STABLELM:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
@ -2385,7 +2584,8 @@ static void llm_load_hparams(
|
||||
} break;
|
||||
case LLM_ARCH_QWEN:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 40: model.type = e_model::MODEL_13B; break;
|
||||
@ -2433,7 +2633,7 @@ static void llm_load_vocab(
|
||||
{
|
||||
std::string tokenizer_name;
|
||||
|
||||
GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
|
||||
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
|
||||
|
||||
if (tokenizer_name == "llama") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_SPM;
|
||||
@ -2523,34 +2723,31 @@ static void llm_load_vocab(
|
||||
};
|
||||
for (const auto & it : special_token_types) {
|
||||
const std::string & key = kv(std::get<0>(it));
|
||||
int32_t & id = std::get<1>(it), old_id = id;
|
||||
int32_t & id = std::get<1>(it);
|
||||
|
||||
GGUF_GET_KEY(ctx, id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, key);
|
||||
// Must be >= -1 and < vocab size. Since the key is unsigned, -1
|
||||
// can only come from the default value, so there's no point in
|
||||
// validating that.
|
||||
if (size_t(id + 1) > vocab.id_to_token.size()) {
|
||||
LLAMA_LOG_WARN("%s: bad special token: '%s' = %d, using default id %d\n",
|
||||
__func__, key.c_str(), id, old_id);
|
||||
id = old_id;
|
||||
uint32_t new_id;
|
||||
if (!ml.get_key(std::get<0>(it), new_id, false)) {
|
||||
continue;
|
||||
}
|
||||
if (new_id >= vocab.id_to_token.size()) {
|
||||
LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
|
||||
__func__, key.c_str(), new_id, id);
|
||||
} else {
|
||||
id = new_id;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Handle add_bos_token and add_eos_token
|
||||
std::string key = kv(LLM_KV_TOKENIZER_ADD_BOS);
|
||||
int kid = gguf_find_key(ctx, key.c_str());
|
||||
enum gguf_type ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
|
||||
vocab.special_add_bos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
|
||||
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
|
||||
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
|
||||
}
|
||||
key = kv(LLM_KV_TOKENIZER_ADD_EOS);
|
||||
kid = gguf_find_key(ctx, key.c_str());
|
||||
ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
|
||||
vocab.special_add_eos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
|
||||
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
|
||||
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
|
||||
{
|
||||
bool temp = true;
|
||||
|
||||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
|
||||
vocab.special_add_bos = int(temp);
|
||||
}
|
||||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
||||
vocab.special_add_eos = int(temp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -3429,7 +3626,7 @@ static void llm_load_tensors(
|
||||
|
||||
static bool llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
|
||||
try {
|
||||
llama_model_loader ml(fname, params.use_mmap);
|
||||
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
|
||||
|
||||
model.hparams.vocab_only = params.vocab_only;
|
||||
|
||||
@ -6605,14 +6802,13 @@ struct llama_grammar_candidate {
|
||||
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
|
||||
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
|
||||
static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
const char * src,
|
||||
size_t n_src,
|
||||
const std::string & src,
|
||||
llama_partial_utf8 partial_start) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
|
||||
const char * pos = src;
|
||||
const char * pos = src.c_str();
|
||||
std::vector<uint32_t> code_points;
|
||||
// common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
|
||||
code_points.reserve(n_src + 1);
|
||||
code_points.reserve(src.size() + 1);
|
||||
uint32_t value = partial_start.value;
|
||||
int n_remain = partial_start.n_remain;
|
||||
|
||||
@ -6663,13 +6859,6 @@ static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
|
||||
}
|
||||
|
||||
static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
std::string src,
|
||||
llama_partial_utf8 partial_start
|
||||
) {
|
||||
return decode_utf8(src.c_str(), src.size(), partial_start);
|
||||
}
|
||||
|
||||
// returns true iff pos points to the end of one of the definitions of a rule
|
||||
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
|
||||
switch (pos->type) {
|
||||
@ -7308,11 +7497,13 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
|
||||
const llama_token eos = llama_token_eos(&ctx->model);
|
||||
|
||||
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
|
||||
candidates_decoded.reserve(candidates->size);
|
||||
std::vector<llama_grammar_candidate> candidates_grammar;
|
||||
candidates_grammar.reserve(candidates->size);
|
||||
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const llama_token id = candidates->data[i].id;
|
||||
const std::string piece = llama_token_to_piece(ctx, id);
|
||||
const std::string & piece = ctx->model.vocab.id_to_token[id].text;
|
||||
if (id == eos) {
|
||||
if (!allow_eos) {
|
||||
candidates->data[i].logit = -INFINITY;
|
||||
@ -7524,7 +7715,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const std::string piece = llama_token_to_piece(ctx, token);
|
||||
const std::string & piece = ctx->model.vocab.id_to_token[token].text;
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
|
||||
@ -8029,7 +8220,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
constexpr bool use_mmap = false;
|
||||
#endif
|
||||
|
||||
llama_model_loader ml(fname_inp, use_mmap);
|
||||
llama_model_loader ml(fname_inp, use_mmap, NULL);
|
||||
if (ml.use_mmap) {
|
||||
ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
|
||||
}
|
||||
@ -8325,7 +8516,7 @@ static int llama_apply_lora_from_file_internal(
|
||||
std::vector<uint8_t> base_buf;
|
||||
if (path_base_model) {
|
||||
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
|
||||
ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ NULL));
|
||||
|
||||
size_t ctx_size;
|
||||
size_t mmapped_size;
|
||||
@ -8553,6 +8744,7 @@ struct llama_model_params llama_model_default_params() {
|
||||
/*.tensor_split =*/ nullptr,
|
||||
/*.progress_callback =*/ nullptr,
|
||||
/*.progress_callback_user_data =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.vocab_only =*/ false,
|
||||
/*.use_mmap =*/ true,
|
||||
/*.use_mlock =*/ false,
|
||||
|
20
llama.h
20
llama.h
@ -158,6 +158,22 @@ extern "C" {
|
||||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||
} llama_batch;
|
||||
|
||||
enum llama_model_kv_override_type {
|
||||
LLAMA_KV_OVERRIDE_INT,
|
||||
LLAMA_KV_OVERRIDE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_BOOL,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
char key[128];
|
||||
enum llama_model_kv_override_type tag;
|
||||
union {
|
||||
int64_t int_value;
|
||||
double float_value;
|
||||
bool bool_value;
|
||||
};
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
@ -165,9 +181,13 @@ extern "C" {
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// override key-value pairs of the model meta data
|
||||
const struct llama_model_kv_override * kv_overrides;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
|
Loading…
Reference in New Issue
Block a user