Update special token handling in conversion scripts for gpt2 derived tokenizers (#3746)

We still have the heads up in `README.md` regarding `bpe` tokenizers and this patch is needed for 

- a couple of tokenizer tests
- some more `special` and `non-special` added tokens handling (as far as I understand it)

* Update special token handling

* Add mpt
This commit is contained in:
Galunid 2023-10-23 21:46:00 +02:00 committed by GitHub
parent 5be6c803fa
commit 69a6735087
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 56 additions and 19 deletions

View File

@ -118,15 +118,24 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens)) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))

View File

@ -123,15 +123,24 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens)) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))

View File

@ -136,9 +136,11 @@ for i in range(vocab_size):
tokens.append(f"[PAD{i}]") tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab: elif reverse_vocab[i] in added_vocab:
# NOTE: wouldn't we like to distinguish CONTROL tokens here?
tokens.append(reverse_vocab[i]) tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.USER_DEFINED) if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else: else:
tokens.append(reverse_vocab[i]) tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.NORMAL)

View File

@ -139,15 +139,24 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens)) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))

View File

@ -111,17 +111,25 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens)) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)