mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 04:00:16 +00:00
Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
69c97bbead
16
.github/workflows/build.yml
vendored
16
.github/workflows/build.yml
vendored
@ -375,7 +375,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Dependencies
|
- name: Dependencies
|
||||||
id: depends
|
id: depends
|
||||||
@ -401,7 +401,7 @@ jobs:
|
|||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: add oneAPI to apt
|
- name: add oneAPI to apt
|
||||||
shell: bash
|
shell: bash
|
||||||
@ -442,7 +442,7 @@ jobs:
|
|||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v2
|
- uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: add oneAPI to apt
|
- name: add oneAPI to apt
|
||||||
shell: bash
|
shell: bash
|
||||||
@ -546,7 +546,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v1
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Dependencies
|
- name: Dependencies
|
||||||
id: depends
|
id: depends
|
||||||
@ -576,7 +576,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v1
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Dependencies
|
- name: Dependencies
|
||||||
id: depends
|
id: depends
|
||||||
@ -610,7 +610,7 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v1
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Dependencies
|
- name: Dependencies
|
||||||
id: depends
|
id: depends
|
||||||
@ -969,14 +969,14 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
- name: Install
|
- name: Install
|
||||||
id: depends
|
id: depends
|
||||||
run: |
|
run: |
|
||||||
$ErrorActionPreference = "Stop"
|
$ErrorActionPreference = "Stop"
|
||||||
write-host "Downloading AMD HIP SDK Installer"
|
write-host "Downloading AMD HIP SDK Installer"
|
||||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||||
write-host "Installing AMD HIP SDK"
|
write-host "Installing AMD HIP SDK"
|
||||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
write-host "Completed AMD HIP SDK installation"
|
write-host "Completed AMD HIP SDK installation"
|
||||||
|
1
.github/workflows/server.yml
vendored
1
.github/workflows/server.yml
vendored
@ -173,6 +173,7 @@ jobs:
|
|||||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||||
run: |
|
run: |
|
||||||
cd examples/server/tests
|
cd examples/server/tests
|
||||||
|
$env:PYTHONIOENCODING = ":replace"
|
||||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||||
|
|
||||||
- name: Slow tests
|
- name: Slow tests
|
||||||
|
@ -139,10 +139,16 @@ set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location o
|
|||||||
# determining _precisely_ which defines are necessary for the llama-config
|
# determining _precisely_ which defines are necessary for the llama-config
|
||||||
# package.
|
# package.
|
||||||
#
|
#
|
||||||
|
set(GGML_TRANSIENT_DEFINES)
|
||||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||||
|
if (GGML_DIR_DEFINES)
|
||||||
|
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||||
|
endif()
|
||||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||||
set(GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES} ${GGML_DIR_DEFINES})
|
if (GGML_TARGET_DEFINES)
|
||||||
|
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||||
|
endif()
|
||||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||||
|
|
||||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
||||||
|
10
Makefile
10
Makefile
@ -434,7 +434,7 @@ endif
|
|||||||
# TODO: probably these flags need to be tweaked on some architectures
|
# TODO: probably these flags need to be tweaked on some architectures
|
||||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||||
|
|
||||||
ifndef RISCV
|
ifndef RISCV_CROSS_COMPILE
|
||||||
|
|
||||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||||
# Use all CPU extensions that are available:
|
# Use all CPU extensions that are available:
|
||||||
@ -514,7 +514,12 @@ ifneq ($(filter loongarch64%,$(UNAME_M)),)
|
|||||||
MK_CXXFLAGS += -mlasx
|
MK_CXXFLAGS += -mlasx
|
||||||
endif
|
endif
|
||||||
|
|
||||||
else
|
ifneq ($(filter riscv64%,$(UNAME_M)),)
|
||||||
|
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
|
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
|
endif
|
||||||
|
|
||||||
|
else # RISC-V CROSS COMPILATION
|
||||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
endif
|
endif
|
||||||
@ -1454,7 +1459,6 @@ llama-gen-docs: examples/gen-docs/gen-docs.cpp \
|
|||||||
$(OBJ_ALL)
|
$(OBJ_ALL)
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||||
./llama-gen-docs
|
|
||||||
|
|
||||||
libllava.a: examples/llava/llava.cpp \
|
libllava.a: examples/llava/llava.cpp \
|
||||||
examples/llava/llava.h \
|
examples/llava/llava.h \
|
||||||
|
@ -89,6 +89,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||||
|
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||||
|
|
||||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||||
|
|
||||||
|
@ -173,7 +173,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
|
|||||||
std::string arg;
|
std::string arg;
|
||||||
const std::string arg_prefix = "--";
|
const std::string arg_prefix = "--";
|
||||||
gpt_params & params = ctx_arg.params;
|
gpt_params & params = ctx_arg.params;
|
||||||
gpt_sampler_params & sparams = params.sparams;
|
|
||||||
|
|
||||||
std::unordered_map<std::string, llama_arg *> arg_to_options;
|
std::unordered_map<std::string, llama_arg *> arg_to_options;
|
||||||
for (auto & opt : ctx_arg.options) {
|
for (auto & opt : ctx_arg.options) {
|
||||||
@ -283,10 +282,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
|
|||||||
params.kv_overrides.back().key[0] = 0;
|
params.kv_overrides.back().key[0] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sparams.seed == LLAMA_DEFAULT_SEED) {
|
|
||||||
sparams.seed = time(NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -823,7 +818,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
[](gpt_params & params) {
|
[](gpt_params & params) {
|
||||||
params.special = true;
|
params.special = true;
|
||||||
}
|
}
|
||||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
{"-cnv", "--conversation"},
|
{"-cnv", "--conversation"},
|
||||||
format(
|
format(
|
||||||
@ -909,7 +904,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
).set_sparam());
|
).set_sparam());
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
{"-s", "--seed"}, "SEED",
|
{"-s", "--seed"}, "SEED",
|
||||||
format("RNG seed (default: %d, use random seed for < 0)", params.sparams.seed),
|
format("RNG seed (default: %u, use random seed for %u)", params.sparams.seed, LLAMA_DEFAULT_SEED),
|
||||||
[](gpt_params & params, const std::string & value) {
|
[](gpt_params & params, const std::string & value) {
|
||||||
params.sparams.seed = std::stoul(value);
|
params.sparams.seed = std::stoul(value);
|
||||||
}
|
}
|
||||||
@ -1422,20 +1417,18 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||||
} else if (arg_next == "layer") {
|
} else if (arg_next == "layer") {
|
||||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||||
}
|
} else if (arg_next == "row") {
|
||||||
else if (arg_next == "row") {
|
|
||||||
#ifdef GGML_USE_SYCL
|
#ifdef GGML_USE_SYCL
|
||||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||||
exit(1);
|
exit(1);
|
||||||
#endif // GGML_USE_SYCL
|
#endif // GGML_USE_SYCL
|
||||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||||
}
|
} else {
|
||||||
else {
|
|
||||||
throw std::invalid_argument("invalid value");
|
throw std::invalid_argument("invalid value");
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
@ -1455,14 +1448,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
}
|
}
|
||||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||||
if (i < split_arg.size()) {
|
if (i < split_arg.size()) {
|
||||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||||
} else {
|
} else {
|
||||||
params.tensor_split[i] = 0.0f;
|
params.tensor_split[i] = 0.0f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
@ -1470,9 +1463,9 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
|
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
|
||||||
[](gpt_params & params, int value) {
|
[](gpt_params & params, int value) {
|
||||||
params.main_gpu = value;
|
params.main_gpu = value;
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
|
@ -56,14 +56,6 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
|
|
||||||
#define GGML_USE_CUDA_SYCL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
|
|
||||||
#define GGML_USE_CUDA_SYCL_VULKAN
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(LLAMA_USE_CURL)
|
#if defined(LLAMA_USE_CURL)
|
||||||
#ifdef __linux__
|
#ifdef __linux__
|
||||||
#include <linux/limits.h>
|
#include <linux/limits.h>
|
||||||
@ -949,11 +941,37 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
|||||||
|
|
||||||
#ifdef LLAMA_USE_CURL
|
#ifdef LLAMA_USE_CURL
|
||||||
|
|
||||||
|
#define CURL_MAX_RETRY 3
|
||||||
|
#define CURL_RETRY_DELAY_SECONDS 2
|
||||||
|
|
||||||
|
|
||||||
static bool starts_with(const std::string & str, const std::string & prefix) {
|
static bool starts_with(const std::string & str, const std::string & prefix) {
|
||||||
// While we wait for C++20's std::string::starts_with...
|
// While we wait for C++20's std::string::starts_with...
|
||||||
return str.rfind(prefix, 0) == 0;
|
return str.rfind(prefix, 0) == 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
|
||||||
|
int remaining_attempts = max_attempts;
|
||||||
|
|
||||||
|
while (remaining_attempts > 0) {
|
||||||
|
fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||||
|
|
||||||
|
CURLcode res = curl_easy_perform(curl);
|
||||||
|
if (res == CURLE_OK) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||||
|
fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||||
|
|
||||||
|
remaining_attempts--;
|
||||||
|
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||||
|
|
||||||
// Initialize libcurl
|
// Initialize libcurl
|
||||||
@ -1057,9 +1075,8 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||||
|
|
||||||
CURLcode res = curl_easy_perform(curl.get());
|
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||||
if (res != CURLE_OK) {
|
if (!was_perform_successful) {
|
||||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1134,11 +1151,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||||||
};
|
};
|
||||||
|
|
||||||
// start the download
|
// start the download
|
||||||
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||||
auto res = curl_easy_perform(curl.get());
|
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||||
if (res != CURLE_OK) {
|
if (!was_perform_successful) {
|
||||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1812,6 +1828,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
|
|||||||
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
|
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
||||||
|
@ -310,6 +310,10 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
|||||||
return cur_p.data[cur_p.selected].id;
|
return cur_p.data[cur_p.selected].id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||||
|
return llama_sampler_get_seed(gsmpl->chain);
|
||||||
|
}
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||||
|
@ -60,6 +60,8 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
|||||||
//
|
//
|
||||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||||
|
|
||||||
|
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
// access the internal list of current candidate tokens
|
// access the internal list of current candidate tokens
|
||||||
|
@ -302,6 +302,8 @@ class Model:
|
|||||||
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
|
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
|
||||||
gguf.MODEL_TENSOR.TIME_MIX_W1,
|
gguf.MODEL_TENSOR.TIME_MIX_W1,
|
||||||
gguf.MODEL_TENSOR.TIME_MIX_W2,
|
gguf.MODEL_TENSOR.TIME_MIX_W2,
|
||||||
|
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||||||
|
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
or not new_name.endswith(".weight")
|
or not new_name.endswith(".weight")
|
||||||
@ -624,6 +626,9 @@ class Model:
|
|||||||
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
||||||
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
||||||
res = "exaone"
|
res = "exaone"
|
||||||
|
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
|
||||||
|
# ref: https://huggingface.co/microsoft/phi-2
|
||||||
|
res = "phi-2"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
@ -2769,6 +2774,8 @@ class Rwkv6Model(Model):
|
|||||||
self.gguf_writer.add_tokenizer_model("rwkv")
|
self.gguf_writer.add_tokenizer_model("rwkv")
|
||||||
self.gguf_writer.add_token_list(tokens)
|
self.gguf_writer.add_token_list(tokens)
|
||||||
self.gguf_writer.add_token_types(toktypes)
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||||
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.hparams["num_hidden_layers"]
|
block_count = self.hparams["num_hidden_layers"]
|
||||||
|
@ -31,6 +31,7 @@ import re
|
|||||||
import requests
|
import requests
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
|
import shutil
|
||||||
|
|
||||||
from hashlib import sha256
|
from hashlib import sha256
|
||||||
from enum import IntEnum, auto
|
from enum import IntEnum, auto
|
||||||
@ -97,6 +98,7 @@ models = [
|
|||||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||||
|
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@ -125,12 +127,27 @@ def download_model(model):
|
|||||||
if tokt == TOKENIZER_TYPE.UGM:
|
if tokt == TOKENIZER_TYPE.UGM:
|
||||||
files.append("spiece.model")
|
files.append("spiece.model")
|
||||||
|
|
||||||
for file in files:
|
if os.path.isdir(repo):
|
||||||
save_path = f"models/tokenizers/{name}/{file}"
|
# If repo is a path on the file system, copy the directory
|
||||||
if os.path.isfile(save_path):
|
for file in files:
|
||||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
src_path = os.path.join(repo, file)
|
||||||
continue
|
dst_path = f"models/tokenizers/{name}/{file}"
|
||||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
if os.path.isfile(dst_path):
|
||||||
|
logger.info(f"{name}: File {dst_path} already exists - skipping")
|
||||||
|
continue
|
||||||
|
if os.path.isfile(src_path):
|
||||||
|
shutil.copy2(src_path, dst_path)
|
||||||
|
logger.info(f"{name}: Copied {src_path} to {dst_path}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"{name}: Source file {src_path} does not exist")
|
||||||
|
else:
|
||||||
|
# If repo is a URL, download the files
|
||||||
|
for file in files:
|
||||||
|
save_path = f"models/tokenizers/{name}/{file}"
|
||||||
|
if os.path.isfile(save_path):
|
||||||
|
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||||
|
continue
|
||||||
|
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||||
|
|
||||||
|
|
||||||
for model in models:
|
for model in models:
|
||||||
|
@ -363,7 +363,13 @@ if __name__ == '__main__':
|
|||||||
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
dest = super().modify_tensors(data_torch, name, bid)
|
dest = list(super().modify_tensors(data_torch, name, bid))
|
||||||
|
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||||
|
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||||
|
# therefore, we ignore them for now
|
||||||
|
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||||
|
if name == "lm_head.weight" and len(dest) == 0:
|
||||||
|
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||||
for dest_name, dest_data in dest:
|
for dest_name, dest_data in dest:
|
||||||
assert isinstance(dest_data, LoraTorchTensor)
|
assert isinstance(dest_data, LoraTorchTensor)
|
||||||
lora_a, lora_b = dest_data.get_lora_A_B()
|
lora_a, lora_b = dest_data.get_lora_A_B()
|
||||||
|
@ -3,32 +3,10 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
// mutates the input string
|
|
||||||
static std::vector<int> parse_list(char * p) {
|
|
||||||
std::vector<int> ret;
|
|
||||||
|
|
||||||
char * q = p;
|
|
||||||
|
|
||||||
while (*p) {
|
|
||||||
if (*p == ',') {
|
|
||||||
*p = '\0';
|
|
||||||
ret.push_back(std::atoi(q));
|
|
||||||
q = p + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
++p;
|
|
||||||
}
|
|
||||||
|
|
||||||
ret.push_back(std::atoi(q));
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void print_usage(int, char ** argv) {
|
static void print_usage(int, char ** argv) {
|
||||||
LOG_TEE("\nexample usage:\n");
|
LOG_TEE("\nexample usage:\n");
|
||||||
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
||||||
|
@ -183,7 +183,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||||
|
|
||||||
TENSOR_DUMP(gf->nodes[0]);
|
TENSOR_DUMP(ggml_graph_node(gf, 0));
|
||||||
|
|
||||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||||
|
|
||||||
@ -224,7 +224,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
|
|
||||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||||
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
|
float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
|
||||||
|
|
||||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||||
printf("=====================================================================================\n");
|
printf("=====================================================================================\n");
|
||||||
@ -252,7 +252,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// Check that the matrix multiplication result is in the right ballpark
|
// Check that the matrix multiplication result is in the right ballpark
|
||||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||||
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
|
float sum_of_Q4_result = tensor_sum_elements(ggml_graph_node(gf31, 0));
|
||||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||||
|
|
||||||
|
@ -226,8 +226,8 @@ static ggml_status compute_piter(
|
|||||||
result.eigenvectors.resize(params.n_batch);
|
result.eigenvectors.resize(params.n_batch);
|
||||||
result.distances.resize(params.n_batch);
|
result.distances.resize(params.n_batch);
|
||||||
// get output nodes
|
// get output nodes
|
||||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
||||||
auto node = gf->nodes[i];
|
auto node = ggml_graph_node(gf, i);
|
||||||
int iter = -1;
|
int iter = -1;
|
||||||
// find b_tensor (without copying data from device)
|
// find b_tensor (without copying data from device)
|
||||||
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
||||||
|
@ -90,8 +90,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
|
@ -370,7 +370,7 @@ struct lora_merge_ctx {
|
|||||||
|
|
||||||
// write data to output file
|
// write data to output file
|
||||||
{
|
{
|
||||||
auto result = gf->nodes[gf->n_nodes - 1];
|
auto * result = ggml_graph_node(gf, -1);
|
||||||
size_t len = ggml_nbytes(result);
|
size_t len = ggml_nbytes(result);
|
||||||
if (read_buf.size() < len) {
|
if (read_buf.size() < len) {
|
||||||
read_buf.resize(len);
|
read_buf.resize(len);
|
||||||
|
@ -159,8 +159,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
LOG("%s: llama backend init\n", __func__);
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
@ -301,6 +299,9 @@ int main(int argc, char ** argv) {
|
|||||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
smpl = gpt_sampler_init(model, sparams);
|
||||||
|
|
||||||
|
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||||
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n\n");
|
||||||
@ -340,8 +341,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
|
|
||||||
smpl = gpt_sampler_init(model, sparams);
|
|
||||||
|
|
||||||
while (n_remain != 0 || params.interactive) {
|
while (n_remain != 0 || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
if (!embd.empty()) {
|
if (!embd.empty()) {
|
||||||
|
@ -39,7 +39,7 @@ python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
|
|||||||
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./examples/llava/convert_image_encoder_to_gguf \
|
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||||
-m path/to/clip-vit-large-patch14-336 \
|
-m path/to/clip-vit-large-patch14-336 \
|
||||||
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
||||||
--output-dir path/to/MobileVLM-1.7B \
|
--output-dir path/to/MobileVLM-1.7B \
|
||||||
@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf \
|
|||||||
```
|
```
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./examples/llava/convert_image_encoder_to_gguf \
|
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||||
-m path/to/clip-vit-large-patch14-336 \
|
-m path/to/clip-vit-large-patch14-336 \
|
||||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||||
@ -57,12 +57,12 @@ python ./examples/llava/convert_image_encoder_to_gguf \
|
|||||||
4. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
4. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./examples/convert_legacy_llama.py path/to/MobileVLM-1.7B
|
python ./examples/convert_legacy_llama.py path/to/MobileVLM-1.7B --skip-unknown
|
||||||
```
|
```
|
||||||
|
|
||||||
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
|
5. Use `quantize` to convert LLaMA part's DataType from `fp32` to `q4_k`
|
||||||
```sh
|
```sh
|
||||||
./llama-quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
|
./llama-quantize path/to/MobileVLM-1.7B/ggml-model-F32.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
|
||||||
```
|
```
|
||||||
|
|
||||||
Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
|
Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
|
||||||
|
@ -2449,7 +2449,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
ggml_backend_graph_compute(ctx->backend, gf);
|
ggml_backend_graph_compute(ctx->backend, gf);
|
||||||
|
|
||||||
// the last node is the embedding tensor
|
// the last node is the embedding tensor
|
||||||
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
|
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
|
||||||
|
|
||||||
// copy the embeddings to the location passed by the user
|
// copy the embeddings to the location passed by the user
|
||||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||||
|
@ -184,7 +184,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||||
ggml_build_forward_expand(gf, flatten);
|
ggml_build_forward_expand(gf, flatten);
|
||||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||||
struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
|
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
||||||
|
|
||||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||||
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||||||
|
@ -18,8 +18,8 @@ struct llava_context {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||||
@ -255,7 +255,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, show_additional_info)) {
|
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -191,8 +191,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
LOG("%s: llama backend init\n", __func__);
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
@ -470,8 +468,10 @@ int main(int argc, char ** argv) {
|
|||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||||
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
||||||
LOG_TEE(" sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
||||||
|
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
|
||||||
// group-attention state
|
// group-attention state
|
||||||
|
@ -2007,8 +2007,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
set(TARGET llama-quantize)
|
set(TARGET llama-quantize)
|
||||||
add_executable(${TARGET} quantize.cpp)
|
add_executable(${TARGET} quantize.cpp)
|
||||||
install(TARGETS ${TARGET} RUNTIME)
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
@ -407,9 +407,44 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||||||
|
|
||||||
*Options:*
|
*Options:*
|
||||||
|
|
||||||
`content`: Set the text to tokenize.
|
`content`: (Required) The text to tokenize.
|
||||||
|
|
||||||
`add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
|
`add_special`: (Optional) Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
|
||||||
|
|
||||||
|
`with_pieces`: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: `false`
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
|
||||||
|
Returns a JSON object with a `tokens` field containing the tokenization result. The `tokens` array contains either just token IDs or objects with `id` and `piece` fields, depending on the `with_pieces` parameter. The piece field is a string if the piece is valid unicode or a list of bytes otherwise.
|
||||||
|
|
||||||
|
|
||||||
|
If `with_pieces` is `false`:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"tokens": [123, 456, 789]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
If `with_pieces` is `true`:
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"tokens": [
|
||||||
|
{"id": 123, "piece": "Hello"},
|
||||||
|
{"id": 456, "piece": " world"},
|
||||||
|
{"id": 789, "piece": "!"}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
With input 'á' (utf8 hex: C3 A1) on tinyllama/stories260k
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"tokens": [
|
||||||
|
{"id": 198, "piece": [195]}, // hex C3
|
||||||
|
{"id": 164, "piece": [161]} // hex A1
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
### POST `/detokenize`: Convert tokens to text
|
### POST `/detokenize`: Convert tokens to text
|
||||||
|
|
||||||
|
@ -1266,6 +1266,7 @@ struct server_context {
|
|||||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||||
{"model", params.model_alias},
|
{"model", params.model_alias},
|
||||||
{"seed", slot.sparams.seed},
|
{"seed", slot.sparams.seed},
|
||||||
|
{"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
|
||||||
{"temperature", slot.sparams.temp},
|
{"temperature", slot.sparams.temp},
|
||||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||||
@ -3017,12 +3018,39 @@ int main(int argc, char ** argv) {
|
|||||||
const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
||||||
const json body = json::parse(req.body);
|
const json body = json::parse(req.body);
|
||||||
|
|
||||||
std::vector<llama_token> tokens;
|
json tokens_response = json::array();
|
||||||
if (body.count("content") != 0) {
|
if (body.count("content") != 0) {
|
||||||
const bool add_special = json_value(body, "add_special", false);
|
const bool add_special = json_value(body, "add_special", false);
|
||||||
tokens = ctx_server.tokenize(body.at("content"), add_special);
|
const bool with_pieces = json_value(body, "with_pieces", false);
|
||||||
|
std::vector<llama_token> tokens = ctx_server.tokenize(body.at("content"), add_special);
|
||||||
|
|
||||||
|
if (with_pieces) {
|
||||||
|
for (const auto& token : tokens) {
|
||||||
|
std::string piece = llama_token_to_piece(ctx_server.ctx, token);
|
||||||
|
json piece_json;
|
||||||
|
|
||||||
|
// Check if the piece is valid UTF-8
|
||||||
|
if (is_valid_utf8(piece)) {
|
||||||
|
piece_json = piece;
|
||||||
|
} else {
|
||||||
|
// If not valid UTF-8, store as array of byte values
|
||||||
|
piece_json = json::array();
|
||||||
|
for (unsigned char c : piece) {
|
||||||
|
piece_json.push_back(static_cast<int>(c));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
tokens_response.push_back({
|
||||||
|
{"id", token},
|
||||||
|
{"piece", piece_json}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
tokens_response = tokens;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
const json data = format_tokenizer_response(tokens);
|
|
||||||
|
const json data = format_tokenizer_response(tokens_response);
|
||||||
res_ok(res, data);
|
res_ok(res, data);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -1,3 +1,6 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
@ -697,6 +700,32 @@ def step_tokenize_set_add_special(context):
|
|||||||
context.tokenize_add_special = True
|
context.tokenize_add_special = True
|
||||||
|
|
||||||
|
|
||||||
|
@step("tokenizing with pieces")
|
||||||
|
@async_run_until_complete
|
||||||
|
async def step_tokenize_with_pieces(context):
|
||||||
|
context.tokenized_text = context_text(context)
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
tokenize_args = {"content": context.tokenized_text, "with_pieces": True}
|
||||||
|
if getattr(context, "tokenize_add_special", None) is not None:
|
||||||
|
tokenize_args["add_special"] = context.tokenize_add_special
|
||||||
|
|
||||||
|
async with session.post(
|
||||||
|
f"{context.base_url}/tokenize", json=tokenize_args
|
||||||
|
) as response:
|
||||||
|
assert response.status == 200
|
||||||
|
tokenize_json = await response.json()
|
||||||
|
context.tokens_with_pieces = tokenize_json["tokens"]
|
||||||
|
|
||||||
|
|
||||||
|
@step("tokens are given with pieces")
|
||||||
|
@async_run_until_complete
|
||||||
|
async def step_tokenize_with_pieces(context):
|
||||||
|
# Verify that the response contains both token IDs and pieces
|
||||||
|
assert all(
|
||||||
|
"id" in token and "piece" in token for token in context.tokens_with_pieces
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@step('tokenizing')
|
@step('tokenizing')
|
||||||
@async_run_until_complete
|
@async_run_until_complete
|
||||||
async def step_tokenize(context):
|
async def step_tokenize(context):
|
||||||
|
@ -616,7 +616,40 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
static bool is_valid_utf8(const std::string & str) {
|
||||||
|
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
|
||||||
|
const unsigned char* end = bytes + str.length();
|
||||||
|
|
||||||
|
while (bytes < end) {
|
||||||
|
if (*bytes <= 0x7F) {
|
||||||
|
// 1-byte sequence (0xxxxxxx)
|
||||||
|
bytes++;
|
||||||
|
} else if ((*bytes & 0xE0) == 0xC0) {
|
||||||
|
// 2-byte sequence (110xxxxx 10xxxxxx)
|
||||||
|
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
|
||||||
|
return false;
|
||||||
|
bytes += 2;
|
||||||
|
} else if ((*bytes & 0xF0) == 0xE0) {
|
||||||
|
// 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
|
||||||
|
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
|
||||||
|
return false;
|
||||||
|
bytes += 3;
|
||||||
|
} else if ((*bytes & 0xF8) == 0xF0) {
|
||||||
|
// 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
|
||||||
|
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
|
||||||
|
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
|
||||||
|
return false;
|
||||||
|
bytes += 4;
|
||||||
|
} else {
|
||||||
|
// Invalid UTF-8 lead byte
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static json format_tokenizer_response(const json & tokens) {
|
||||||
return json {
|
return json {
|
||||||
{"tokens", tokens}
|
{"tokens", tokens}
|
||||||
};
|
};
|
||||||
|
@ -4,33 +4,23 @@
|
|||||||
# Copyright (C) 2024 Intel Corporation
|
# Copyright (C) 2024 Intel Corporation
|
||||||
# SPDX-License-Identifier: MIT
|
# SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
|
||||||
source /opt/intel/oneapi/setvars.sh
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
if [ $# -gt 0 ]; then
|
|
||||||
GGML_SYCL_DEVICE=$1
|
|
||||||
GGML_SYCL_SINGLE_GPU=1
|
|
||||||
else
|
|
||||||
GGML_SYCL_DEVICE=0
|
|
||||||
GGML_SYCL_SINGLE_GPU=0
|
|
||||||
fi
|
|
||||||
|
|
||||||
#export GGML_SYCL_DEBUG=1
|
#export GGML_SYCL_DEBUG=1
|
||||||
|
|
||||||
|
|
||||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||||
|
|
||||||
if [ $GGML_SYCL_SINGLE_GPU -eq 1 ]; then
|
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||||
|
MODEL_FILE=llama-2-7b.Q4_0.gguf
|
||||||
|
NGL=33
|
||||||
|
|
||||||
|
if [ $# -gt 0 ]; then
|
||||||
|
GGML_SYCL_DEVICE=$1
|
||||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||||
#use signle GPU only
|
#use signle GPU only
|
||||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||||
|
|
||||||
else
|
else
|
||||||
#use multiple GPUs with same max compute units
|
#use multiple GPUs with same max compute units
|
||||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0
|
||||||
fi
|
fi
|
||||||
|
|
||||||
#use main GPU only
|
|
||||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
|
||||||
|
|
||||||
#use multiple GPUs with same max compute units
|
|
||||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
|
||||||
|
20
flake.lock
20
flake.lock
@ -5,11 +5,11 @@
|
|||||||
"nixpkgs-lib": "nixpkgs-lib"
|
"nixpkgs-lib": "nixpkgs-lib"
|
||||||
},
|
},
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1725024810,
|
"lastModified": 1725234343,
|
||||||
"narHash": "sha256-ODYRm8zHfLTH3soTFWE452ydPYz2iTvr9T8ftDMUQ3E=",
|
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
|
||||||
"owner": "hercules-ci",
|
"owner": "hercules-ci",
|
||||||
"repo": "flake-parts",
|
"repo": "flake-parts",
|
||||||
"rev": "af510d4a62d071ea13925ce41c95e3dec816c01d",
|
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@ -20,11 +20,11 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1724819573,
|
"lastModified": 1725634671,
|
||||||
"narHash": "sha256-GnR7/ibgIH1vhoy8cYdmXE6iyZqKqFxQSVkFgosBh6w=",
|
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "71e91c409d1e654808b2621f28a327acfdad8dc2",
|
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@ -36,14 +36,14 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs-lib": {
|
"nixpkgs-lib": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1722555339,
|
"lastModified": 1725233747,
|
||||||
"narHash": "sha256-uFf2QeW7eAHlYXuDktm9c25OxOyCoUOQmh5SZ9amE5Q=",
|
"narHash": "sha256-Ss8QWLXdr2JCBPcYChJhz4xJm+h/xjl4G0c0XlP6a74=",
|
||||||
"type": "tarball",
|
"type": "tarball",
|
||||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
"type": "tarball",
|
"type": "tarball",
|
||||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"root": {
|
"root": {
|
||||||
|
@ -80,6 +80,13 @@ ggml_backend_cann_buffer_type(int32_t device);
|
|||||||
*/
|
*/
|
||||||
GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
|
GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
|
||||||
|
*
|
||||||
|
* @return A pointer to the host buffer type interface.
|
||||||
|
*/
|
||||||
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Retrieves the description of a specific CANN device.
|
* @brief Retrieves the description of a specific CANN device.
|
||||||
*
|
*
|
||||||
|
@ -358,6 +358,7 @@ extern "C" {
|
|||||||
|
|
||||||
struct ggml_object;
|
struct ggml_object;
|
||||||
struct ggml_context;
|
struct ggml_context;
|
||||||
|
struct ggml_cgraph;
|
||||||
|
|
||||||
// NOTE: always add types at the end of the enum to keep backward compatibility
|
// NOTE: always add types at the end of the enum to keep backward compatibility
|
||||||
enum ggml_type {
|
enum ggml_type {
|
||||||
@ -575,23 +576,9 @@ extern "C" {
|
|||||||
GGML_TENSOR_FLAG_PARAM = 4,
|
GGML_TENSOR_FLAG_PARAM = 4,
|
||||||
};
|
};
|
||||||
|
|
||||||
// ggml object
|
|
||||||
struct ggml_object {
|
|
||||||
size_t offs;
|
|
||||||
size_t size;
|
|
||||||
|
|
||||||
struct ggml_object * next;
|
|
||||||
|
|
||||||
enum ggml_object_type type;
|
|
||||||
|
|
||||||
char padding[4];
|
|
||||||
};
|
|
||||||
|
|
||||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
||||||
|
|
||||||
// n-dimensional tensor
|
// n-dimensional tensor
|
||||||
struct ggml_tensor {
|
struct ggml_tensor {
|
||||||
enum ggml_type type;
|
enum ggml_type type;
|
||||||
|
|
||||||
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
||||||
|
|
||||||
@ -655,7 +642,7 @@ extern "C" {
|
|||||||
|
|
||||||
struct ggml_threadpool; // forward declaration, see ggml.c
|
struct ggml_threadpool; // forward declaration, see ggml.c
|
||||||
|
|
||||||
typedef struct ggml_threadpool * ggml_threadpool_t;
|
typedef struct ggml_threadpool * ggml_threadpool_t;
|
||||||
|
|
||||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||||
// since https://github.com/ggerganov/ggml/issues/287
|
// since https://github.com/ggerganov/ggml/issues/287
|
||||||
@ -671,35 +658,6 @@ extern "C" {
|
|||||||
void * abort_callback_data;
|
void * abort_callback_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_cgraph_eval_order {
|
|
||||||
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
|
||||||
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
|
||||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
|
||||||
};
|
|
||||||
|
|
||||||
typedef uint32_t ggml_bitset_t;
|
|
||||||
|
|
||||||
struct ggml_hash_set {
|
|
||||||
size_t size;
|
|
||||||
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
|
|
||||||
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
|
|
||||||
};
|
|
||||||
|
|
||||||
// computation graph
|
|
||||||
struct ggml_cgraph {
|
|
||||||
int size;
|
|
||||||
int n_nodes;
|
|
||||||
int n_leafs;
|
|
||||||
|
|
||||||
struct ggml_tensor ** nodes;
|
|
||||||
struct ggml_tensor ** grads;
|
|
||||||
struct ggml_tensor ** leafs;
|
|
||||||
|
|
||||||
struct ggml_hash_set visited_hash_set;
|
|
||||||
|
|
||||||
enum ggml_cgraph_eval_order order;
|
|
||||||
};
|
|
||||||
|
|
||||||
// scratch buffer
|
// scratch buffer
|
||||||
struct ggml_scratch {
|
struct ggml_scratch {
|
||||||
size_t offs;
|
size_t offs;
|
||||||
@ -2017,8 +1975,6 @@ extern "C" {
|
|||||||
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||||
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||||
|
|
||||||
#define GGML_N_TASKS_MAX -1
|
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom1(
|
GGML_API struct ggml_tensor * ggml_map_custom1(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -2088,30 +2044,35 @@ extern "C" {
|
|||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * tensor);
|
struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
|
||||||
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
||||||
|
|
||||||
// graph allocation in a context
|
// graph allocation in a context
|
||||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
||||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||||
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
||||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
|
||||||
|
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
|
||||||
|
GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
|
||||||
|
GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
|
||||||
|
GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
|
||||||
|
|
||||||
|
GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
GGML_API size_t ggml_graph_overhead(void);
|
GGML_API size_t ggml_graph_overhead(void);
|
||||||
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
||||||
|
|
||||||
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||||
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads);
|
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||||
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1);
|
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||||
GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params);
|
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||||
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||||
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||||
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||||
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||||
|
|
||||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||||
@ -2509,6 +2470,7 @@ extern "C" {
|
|||||||
GGML_API int ggml_cpu_has_gpublas (void);
|
GGML_API int ggml_cpu_has_gpublas (void);
|
||||||
GGML_API int ggml_cpu_has_sse3 (void);
|
GGML_API int ggml_cpu_has_sse3 (void);
|
||||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||||
|
GGML_API int ggml_cpu_has_riscv_v (void);
|
||||||
GGML_API int ggml_cpu_has_sycl (void);
|
GGML_API int ggml_cpu_has_sycl (void);
|
||||||
GGML_API int ggml_cpu_has_rpc (void);
|
GGML_API int ggml_cpu_has_rpc (void);
|
||||||
GGML_API int ggml_cpu_has_vsx (void);
|
GGML_API int ggml_cpu_has_vsx (void);
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
#include "ggml-impl.h"
|
||||||
#include "ggml-blas.h"
|
#include "ggml-blas.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
|
@ -30,6 +30,7 @@
|
|||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
|
||||||
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
#include "ggml-cann/aclnn_ops.h"
|
#include "ggml-cann/aclnn_ops.h"
|
||||||
#include "ggml-cann/common.h"
|
#include "ggml-cann/common.h"
|
||||||
@ -1220,6 +1221,116 @@ ggml_backend_cann_buffer_type(int32_t device) {
|
|||||||
return &ggml_backend_cann_buffer_types[device];
|
return &ggml_backend_cann_buffer_types[device];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Retrieves the name associated with a CANN host buffer type.
|
||||||
|
*
|
||||||
|
* This function returns the descriptive name associated with the specified
|
||||||
|
* CANN host buffer type context.
|
||||||
|
*
|
||||||
|
* @param buft Pointer to the host buffer type context.
|
||||||
|
* @return Const pointer to the C-style string containing the name.
|
||||||
|
*/
|
||||||
|
GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||||
|
return "CANN_Host";
|
||||||
|
|
||||||
|
GGML_UNUSED(buft);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Retrieves the name associated with a CANN host buffer.
|
||||||
|
*
|
||||||
|
* This function returns the descriptive name associated with the specified
|
||||||
|
* CANN host buffer context.
|
||||||
|
*
|
||||||
|
* @param buft Pointer to the host buffer context.
|
||||||
|
* @return Const pointer to the C-style string containing the name.
|
||||||
|
*/
|
||||||
|
GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||||
|
return "CANN_Host";
|
||||||
|
|
||||||
|
GGML_UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Free resources associated with a CANN host buffer.
|
||||||
|
*
|
||||||
|
* This function frees the resources associated with a CANN host buffer, including
|
||||||
|
* its context.
|
||||||
|
*
|
||||||
|
* @param buffer The CANN host buffer to free.
|
||||||
|
*/
|
||||||
|
GGML_CALL static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
|
||||||
|
ACL_CHECK(aclrtFreeHost(buffer->context));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Allocates a new CANN host buffer of the specified size.
|
||||||
|
*
|
||||||
|
* This function allocates a new CANN host buffer with the given size.
|
||||||
|
* @param size Size in bytes of the host buffer to allocate.
|
||||||
|
* @return Pointer to the allocated host buffer, or nullptr if allocation fails.
|
||||||
|
*/
|
||||||
|
static void * ggml_cann_host_malloc(size_t size) {
|
||||||
|
if (getenv("GGML_CANN_NO_PINNED") != nullptr) {
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
void * hostPtr = nullptr;
|
||||||
|
aclError err = aclrtMallocHost((void **) &hostPtr, size);
|
||||||
|
if (err != ACL_SUCCESS) {
|
||||||
|
|
||||||
|
GGML_CANN_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||||
|
size / 1024.0 / 1024.0, aclGetRecentErrMsg());
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return hostPtr;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Allocates a new CANN host buffer of the specified type and size.
|
||||||
|
*
|
||||||
|
* @param buft Pointer to the host buffer type context.
|
||||||
|
* @param size Size in bytes of the host buffer to allocate.
|
||||||
|
* @return Pointer to the allocated host buffer, or CPU buffer pointer if allocation fails.
|
||||||
|
*/
|
||||||
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||||
|
void * hostPtr = ggml_cann_host_malloc(size);
|
||||||
|
|
||||||
|
if (hostPtr == nullptr) {
|
||||||
|
// fallback to cpu buffer
|
||||||
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(hostPtr, size);
|
||||||
|
buffer->buft = buft;
|
||||||
|
buffer->iface.get_name = ggml_backend_cann_host_buffer_name;
|
||||||
|
buffer->iface.free_buffer = ggml_backend_cann_host_buffer_free;
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Interface for managing CANN host buffer types in the GGML backend.
|
||||||
|
*
|
||||||
|
* Provides function pointers for allocating, querying properties, and managing
|
||||||
|
* memory for CANN buffer types in the GGML backend.
|
||||||
|
*/
|
||||||
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
|
||||||
|
static struct ggml_backend_buffer_type ggml_backend_cann_buffer_type_host = {
|
||||||
|
/* .iface = */ {
|
||||||
|
/* .get_name = */ ggml_backend_cann_host_buffer_type_name,
|
||||||
|
/* .alloc_buffer = */ ggml_backend_cann_host_buffer_type_alloc_buffer,
|
||||||
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||||
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||||
|
},
|
||||||
|
/* .context = */ nullptr,
|
||||||
|
};
|
||||||
|
|
||||||
|
return &ggml_backend_cann_buffer_type_host;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Computes the forward operation for a given tensor using CANN
|
* @brief Computes the forward operation for a given tensor using CANN
|
||||||
* operations.
|
* operations.
|
||||||
@ -1942,7 +2053,7 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
|
|||||||
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
ggml_cann_set_device(ctx->device);
|
||||||
ggml_backend_t cann_backend =
|
ggml_backend_t cann_backend =
|
||||||
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
|
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
|
||||||
/* .interface = */ ggml_backend_cann_interface,
|
/* .interface = */ ggml_backend_cann_interface,
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#include "ggml.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
#include "ggml-cuda/common.cuh"
|
#include "ggml-cuda/common.cuh"
|
||||||
|
@ -26,7 +26,11 @@ void ggml_cuda_op_mul_mat_q(
|
|||||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||||
|
|
||||||
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst};
|
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||||
|
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||||
|
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||||
|
const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
|
||||||
|
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
|
@ -2742,6 +2742,7 @@ struct mmq_args {
|
|||||||
int64_t ne00; int64_t ne01; int64_t stride01;
|
int64_t ne00; int64_t ne01; int64_t stride01;
|
||||||
int64_t ne10; int64_t ne11; int64_t stride11;
|
int64_t ne10; int64_t ne11; int64_t stride11;
|
||||||
int64_t ne0;
|
int64_t ne0;
|
||||||
|
bool use_stream_k;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<ggml_type type>
|
template<ggml_type type>
|
||||||
@ -2777,8 +2778,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
|||||||
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||||
const dim3 block_nums_xy_tiling(nty, ntx, 1);
|
const dim3 block_nums_xy_tiling(nty, ntx, 1);
|
||||||
|
|
||||||
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
|
if (!args.use_stream_k) {
|
||||||
if (!use_stream_k) {
|
|
||||||
if (args.ne01 % mmq_y == 0) {
|
if (args.ne01 % mmq_y == 0) {
|
||||||
constexpr bool need_check = false;
|
constexpr bool need_check = false;
|
||||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
||||||
|
39
ggml/src/ggml-cuda/vendors/musa.h
vendored
39
ggml/src/ggml-cuda/vendors/musa.h
vendored
@ -130,42 +130,3 @@
|
|||||||
#define cudaKernelNodeParams musaKernelNodeParams
|
#define cudaKernelNodeParams musaKernelNodeParams
|
||||||
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
|
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
|
||||||
#define cudaStreamEndCapture musaStreamEndCapture
|
#define cudaStreamEndCapture musaStreamEndCapture
|
||||||
|
|
||||||
// XXX: Clang builtins mapping
|
|
||||||
#define __vsub4 __vsub4_musa
|
|
||||||
#define __vcmpeq4 __vcmpeq4_musa
|
|
||||||
#define __vcmpne4 __vcmpne4_musa
|
|
||||||
|
|
||||||
#ifndef __has_builtin
|
|
||||||
#define __has_builtin(x) 0
|
|
||||||
#endif
|
|
||||||
|
|
||||||
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
|
||||||
|
|
||||||
static __device__ __forceinline__ int __vsub4_musa(const int a, const int b) {
|
|
||||||
return __vsubss4(a, b);
|
|
||||||
}
|
|
||||||
|
|
||||||
static __device__ __forceinline__ unsigned int __vcmpeq4_musa(unsigned int a, unsigned int b) {
|
|
||||||
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
|
||||||
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
|
||||||
unsigned int c;
|
|
||||||
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < 4; ++i) {
|
|
||||||
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
|
||||||
}
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
|
||||||
static __device__ __forceinline__ unsigned int __vcmpne4_musa(unsigned int a, unsigned int b) {
|
|
||||||
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
|
||||||
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
|
||||||
unsigned int c;
|
|
||||||
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < 4; ++i) {
|
|
||||||
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
|
|
||||||
}
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
@ -629,8 +629,16 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
|||||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
enum ggml_cgraph_eval_order {
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||||
|
};
|
||||||
|
|
||||||
// bitset
|
// bitset
|
||||||
|
|
||||||
|
typedef uint32_t ggml_bitset_t;
|
||||||
|
|
||||||
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
|
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
|
||||||
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
|
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
|
||||||
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
|
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
|
||||||
@ -656,6 +664,12 @@ static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
|
|||||||
#define GGML_HASHSET_FULL ((size_t)-1)
|
#define GGML_HASHSET_FULL ((size_t)-1)
|
||||||
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
|
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
|
||||||
|
|
||||||
|
struct ggml_hash_set {
|
||||||
|
size_t size;
|
||||||
|
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
|
||||||
|
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
|
||||||
|
};
|
||||||
|
|
||||||
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
||||||
void ggml_hash_set_free(struct ggml_hash_set * hash_set);
|
void ggml_hash_set_free(struct ggml_hash_set * hash_set);
|
||||||
|
|
||||||
@ -745,6 +759,24 @@ static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct g
|
|||||||
GGML_ABORT("fatal error");
|
GGML_ABORT("fatal error");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// computation graph
|
||||||
|
|
||||||
|
struct ggml_cgraph {
|
||||||
|
int size;
|
||||||
|
int n_nodes;
|
||||||
|
int n_leafs;
|
||||||
|
|
||||||
|
struct ggml_tensor ** nodes;
|
||||||
|
struct ggml_tensor ** grads;
|
||||||
|
struct ggml_tensor ** leafs;
|
||||||
|
|
||||||
|
struct ggml_hash_set visited_hash_set;
|
||||||
|
|
||||||
|
enum ggml_cgraph_eval_order order;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
#include "ggml.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend.h"
|
#include "ggml-backend.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
#include "ggml-kompute.h"
|
#include "ggml-kompute.h"
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
#import "ggml-metal.h"
|
#import "ggml-metal.h"
|
||||||
|
|
||||||
|
#import "ggml-impl.h"
|
||||||
#import "ggml-backend-impl.h"
|
#import "ggml-backend-impl.h"
|
||||||
#import "ggml.h"
|
|
||||||
|
|
||||||
#import <Foundation/Foundation.h>
|
#import <Foundation/Foundation.h>
|
||||||
|
|
||||||
@ -17,8 +17,8 @@
|
|||||||
#define GGML_METAL_LOG_WARN(...)
|
#define GGML_METAL_LOG_WARN(...)
|
||||||
#define GGML_METAL_LOG_ERROR(...)
|
#define GGML_METAL_LOG_ERROR(...)
|
||||||
#else
|
#else
|
||||||
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||||
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||||
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -882,7 +882,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
// create multiple command buffers and enqueue them
|
// create multiple command buffers and enqueue them
|
||||||
// then, we encode the graph into the command buffers in parallel
|
// then, we encode the graph into the command buffers in parallel
|
||||||
|
|
||||||
const int n_nodes = gf->n_nodes;
|
const int n_nodes = gf->n_nodes;
|
||||||
const int n_cb = ctx->n_cb;
|
const int n_cb = ctx->n_cb;
|
||||||
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||||
|
|
||||||
@ -3039,8 +3039,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
if (status != MTLCommandBufferStatusCompleted) {
|
if (status != MTLCommandBufferStatusCompleted) {
|
||||||
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
||||||
if (status == MTLCommandBufferStatusError) {
|
if (status == MTLCommandBufferStatusError) {
|
||||||
NSString * error_code = [command_buffer error].localizedDescription;
|
GGML_METAL_LOG_INFO("error: %s\n", [[command_buffer error].localizedDescription UTF8String]);
|
||||||
GGML_METAL_LOG_INFO("error: %s\n", [error_code UTF8String]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return GGML_STATUS_FAILED;
|
return GGML_STATUS_FAILED;
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
#include "ggml-rpc.h"
|
#include "ggml-rpc.h"
|
||||||
#include "ggml.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
#include <cinttypes>
|
#include <cinttypes>
|
||||||
|
@ -33,7 +33,7 @@
|
|||||||
#include <sycl/half_type.hpp>
|
#include <sycl/half_type.hpp>
|
||||||
|
|
||||||
#include "ggml-sycl.h"
|
#include "ggml-sycl.h"
|
||||||
#include "ggml.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
#include "ggml-sycl/backend.hpp"
|
#include "ggml-sycl/backend.hpp"
|
||||||
@ -5137,13 +5137,17 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
|||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
case GGML_OP_SQR:
|
case GGML_OP_SQR:
|
||||||
case GGML_OP_CLAMP:
|
case GGML_OP_CLAMP:
|
||||||
|
return true;
|
||||||
case GGML_OP_CONT:
|
case GGML_OP_CONT:
|
||||||
|
return op->src[0]->type != GGML_TYPE_BF16;
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
return true;
|
return true;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
return ggml_is_contiguous(op->src[0]);
|
return ggml_is_contiguous(op->src[0]);
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
|
// TODO: add support for the new F32 operations
|
||||||
|
return op->src[0]->type == GGML_TYPE_F16;
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
case GGML_OP_SUM_ROWS:
|
case GGML_OP_SUM_ROWS:
|
||||||
case GGML_OP_ARGSORT:
|
case GGML_OP_ARGSORT:
|
||||||
|
@ -21,7 +21,7 @@
|
|||||||
#include <memory>
|
#include <memory>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml-impl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
#include "ggml-vulkan-shaders.hpp"
|
#include "ggml-vulkan-shaders.hpp"
|
||||||
|
120
ggml/src/ggml.c
120
ggml/src/ggml.c
@ -287,6 +287,7 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
|
|||||||
#define GGML_DEBUG 0
|
#define GGML_DEBUG 0
|
||||||
#define GGML_GELU_FP16
|
#define GGML_GELU_FP16
|
||||||
#define GGML_GELU_QUICK_FP16
|
#define GGML_GELU_QUICK_FP16
|
||||||
|
#define GGML_N_TASKS_MAX (-1)
|
||||||
|
|
||||||
#define GGML_SOFT_MAX_UNROLL 4
|
#define GGML_SOFT_MAX_UNROLL 4
|
||||||
#define GGML_VEC_DOT_UNROLL 2
|
#define GGML_VEC_DOT_UNROLL 2
|
||||||
@ -1120,21 +1121,21 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
|
|||||||
#define GGML_F32x4_ADD vaddq_f32
|
#define GGML_F32x4_ADD vaddq_f32
|
||||||
#define GGML_F32x4_MUL vmulq_f32
|
#define GGML_F32x4_MUL vmulq_f32
|
||||||
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
|
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
|
||||||
#define GGML_F32x4_REDUCE(res, x) \
|
#define GGML_F32x4_REDUCE(res, x) \
|
||||||
{ \
|
{ \
|
||||||
int offset = GGML_F32_ARR >> 1; \
|
int offset = GGML_F32_ARR >> 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f32(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
offset >>= 1; \
|
offset >>= 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f32(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
offset >>= 1; \
|
offset >>= 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f32(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
res = GGML_F32x4_REDUCE_ONE(x[0]); \
|
(res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
|
||||||
}
|
}
|
||||||
|
|
||||||
#define GGML_F32_VEC GGML_F32x4
|
#define GGML_F32_VEC GGML_F32x4
|
||||||
@ -1161,30 +1162,30 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
|
|||||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||||
#define GGML_F16x8_ADD vaddq_f16
|
#define GGML_F16x8_ADD vaddq_f16
|
||||||
#define GGML_F16x8_MUL vmulq_f16
|
#define GGML_F16x8_MUL vmulq_f16
|
||||||
#define GGML_F16x8_REDUCE(res, x) \
|
#define GGML_F16x8_REDUCE(res, x) \
|
||||||
do { \
|
do { \
|
||||||
int offset = GGML_F16_ARR >> 1; \
|
int offset = GGML_F16_ARR >> 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f16(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
offset >>= 1; \
|
offset >>= 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f16(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
offset >>= 1; \
|
offset >>= 1; \
|
||||||
for (int i = 0; i < offset; ++i) { \
|
for (int i = 0; i < offset; ++i) { \
|
||||||
x[i] = vaddq_f16(x[i], x[offset+i]); \
|
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||||
} \
|
} \
|
||||||
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
|
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||||||
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
|
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||||||
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
#define GGML_F16_VEC GGML_F16x8
|
#define GGML_F16_VEC GGML_F16x8
|
||||||
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||||||
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
|
||||||
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||||||
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||||||
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||||||
@ -1893,6 +1894,23 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
|||||||
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
|
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
//
|
||||||
|
// ggml object
|
||||||
|
//
|
||||||
|
|
||||||
|
struct ggml_object {
|
||||||
|
size_t offs;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
struct ggml_object * next;
|
||||||
|
|
||||||
|
enum ggml_object_type type;
|
||||||
|
|
||||||
|
char padding[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||||
|
|
||||||
//
|
//
|
||||||
// ggml context
|
// ggml context
|
||||||
//
|
//
|
||||||
@ -19161,6 +19179,34 @@ void ggml_graph_clear(struct ggml_cgraph * cgraph) {
|
|||||||
ggml_hash_set_reset(&cgraph->visited_hash_set);
|
ggml_hash_set_reset(&cgraph->visited_hash_set);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int ggml_graph_size(struct ggml_cgraph * cgraph) {
|
||||||
|
return cgraph->size;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
|
||||||
|
if (i < 0) {
|
||||||
|
GGML_ASSERT(cgraph->n_nodes + i >= 0);
|
||||||
|
return cgraph->nodes[cgraph->n_nodes + i];
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_ASSERT(i < cgraph->n_nodes);
|
||||||
|
return cgraph->nodes[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
|
||||||
|
return cgraph->nodes;
|
||||||
|
}
|
||||||
|
|
||||||
|
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
|
||||||
|
return cgraph->n_nodes;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
|
||||||
|
GGML_ASSERT(cgraph->size > cgraph->n_nodes);
|
||||||
|
cgraph->nodes[cgraph->n_nodes] = tensor;
|
||||||
|
cgraph->n_nodes++;
|
||||||
|
}
|
||||||
|
|
||||||
// Android's libc implementation "bionic" does not support setting affinity
|
// Android's libc implementation "bionic" does not support setting affinity
|
||||||
#if defined(__gnu_linux__)
|
#if defined(__gnu_linux__)
|
||||||
static void set_numa_thread_affinity(int thread_n) {
|
static void set_numa_thread_affinity(int thread_n) {
|
||||||
@ -23242,6 +23288,14 @@ int ggml_cpu_has_arm_fma(void) {
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int ggml_cpu_has_riscv_v(void) {
|
||||||
|
#if defined(__riscv_v_intrinsic)
|
||||||
|
return 1;
|
||||||
|
#else
|
||||||
|
return 0;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_metal(void) {
|
int ggml_cpu_has_metal(void) {
|
||||||
#if defined(GGML_USE_METAL)
|
#if defined(GGML_USE_METAL)
|
||||||
return 1;
|
return 1;
|
||||||
|
@ -1056,6 +1056,9 @@ extern "C" {
|
|||||||
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
|
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
|
||||||
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
|
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
|
||||||
|
|
||||||
|
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
|
||||||
|
LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
|
||||||
|
|
||||||
// available samplers:
|
// available samplers:
|
||||||
|
|
||||||
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
|
LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
|
||||||
@ -1127,6 +1130,10 @@ extern "C" {
|
|||||||
int32_t n_logit_bias,
|
int32_t n_logit_bias,
|
||||||
const llama_logit_bias * logit_bias);
|
const llama_logit_bias * logit_bias);
|
||||||
|
|
||||||
|
|
||||||
|
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
|
||||||
|
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
|
||||||
|
|
||||||
/// @details Sample and accept a token from the idx-th output of the last evaluation
|
/// @details Sample and accept a token from the idx-th output of the last evaluation
|
||||||
//
|
//
|
||||||
// Shorthand for:
|
// Shorthand for:
|
||||||
|
@ -8,6 +8,7 @@
|
|||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <cfloat>
|
#include <cfloat>
|
||||||
|
#include <chrono>
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <numeric>
|
#include <numeric>
|
||||||
#include <random>
|
#include <random>
|
||||||
@ -162,6 +163,19 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
|||||||
cur_p->size = k;
|
cur_p->size = k;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static uint32_t get_rng_seed(uint32_t seed) {
|
||||||
|
if (seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
// use system clock if std::random_device is not a true RNG
|
||||||
|
static bool is_rd_prng = std::random_device().entropy() == 0;
|
||||||
|
if (is_rd_prng) {
|
||||||
|
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
|
||||||
|
}
|
||||||
|
std::random_device rd;
|
||||||
|
return rd();
|
||||||
|
}
|
||||||
|
return seed;
|
||||||
|
}
|
||||||
|
|
||||||
// llama_sampler API
|
// llama_sampler API
|
||||||
|
|
||||||
const char * llama_sampler_name(const struct llama_sampler * smpl) {
|
const char * llama_sampler_name(const struct llama_sampler * smpl) {
|
||||||
@ -335,13 +349,26 @@ void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler
|
|||||||
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
|
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
|
||||||
const auto * p = (const llama_sampler_chain *) chain->ctx;
|
const auto * p = (const llama_sampler_chain *) chain->ctx;
|
||||||
|
|
||||||
if (i < 0 || i >= (int32_t) p->samplers.size()) {
|
if (i < 0 || (size_t) i >= p->samplers.size()) {
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
return p->samplers[i];
|
return p->samplers[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
|
||||||
|
auto * p = (llama_sampler_chain *) chain->ctx;
|
||||||
|
|
||||||
|
if (i < 0 || (size_t) i >= p->samplers.size()) {
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto * result = p->samplers[i];
|
||||||
|
p->samplers.erase(p->samplers.begin() + i);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
int llama_sampler_chain_n(const struct llama_sampler * chain) {
|
int llama_sampler_chain_n(const struct llama_sampler * chain) {
|
||||||
const auto * p = (const llama_sampler_chain *) chain->ctx;
|
const auto * p = (const llama_sampler_chain *) chain->ctx;
|
||||||
|
|
||||||
@ -387,6 +414,7 @@ struct llama_sampler * llama_sampler_init_greedy() {
|
|||||||
|
|
||||||
struct llama_sampler_dist {
|
struct llama_sampler_dist {
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
std::mt19937 rng;
|
std::mt19937 rng;
|
||||||
};
|
};
|
||||||
@ -416,7 +444,8 @@ static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sample
|
|||||||
|
|
||||||
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
|
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
|
||||||
@ -433,11 +462,13 @@ static struct llama_sampler_i llama_sampler_dist_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_dist_i,
|
/* .iface = */ &llama_sampler_dist_i,
|
||||||
/* .ctx = */ new llama_sampler_dist {
|
/* .ctx = */ new llama_sampler_dist {
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .seed_cur = */ seed_cur,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1032,6 +1063,7 @@ struct llama_sampler_mirostat {
|
|||||||
const int32_t n_vocab;
|
const int32_t n_vocab;
|
||||||
|
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
const float tau;
|
const float tau;
|
||||||
const float eta;
|
const float eta;
|
||||||
@ -1100,7 +1132,8 @@ static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sa
|
|||||||
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
|
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
|
||||||
ctx->mu = 2.0f*ctx->tau;
|
ctx->mu = 2.0f*ctx->tau;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
|
||||||
@ -1117,16 +1150,18 @@ static struct llama_sampler_i llama_sampler_mirostat_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
|
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_mirostat_i,
|
/* .iface = */ &llama_sampler_mirostat_i,
|
||||||
/* .ctx = */ new llama_sampler_mirostat {
|
/* .ctx = */ new llama_sampler_mirostat {
|
||||||
/* .n_vocab = */ n_vocab,
|
/* .n_vocab = */ n_vocab,
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .tau = */ tau,
|
/* .seed_cur = */ seed_cur,
|
||||||
/* .eta = */ eta,
|
/* .tau = */ tau,
|
||||||
/* .m = */ m,
|
/* .eta = */ eta,
|
||||||
/* .mu = */ 2.0f*tau,
|
/* .m = */ m,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .mu = */ 2.0f*tau,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1135,6 +1170,7 @@ struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t see
|
|||||||
|
|
||||||
struct llama_sampler_mirostat_v2 {
|
struct llama_sampler_mirostat_v2 {
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
const float tau;
|
const float tau;
|
||||||
const float eta;
|
const float eta;
|
||||||
@ -1179,7 +1215,8 @@ static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_t
|
|||||||
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
|
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
|
||||||
ctx->mu = 2.0f*ctx->tau;
|
ctx->mu = 2.0f*ctx->tau;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
|
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
|
||||||
@ -1212,14 +1249,16 @@ static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
|
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_mirostat_v2_i,
|
/* .iface = */ &llama_sampler_mirostat_v2_i,
|
||||||
/* .ctx = */ new llama_sampler_mirostat_v2 {
|
/* .ctx = */ new llama_sampler_mirostat_v2 {
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .tau = */ tau,
|
/* .seed_cur = */ seed_cur,
|
||||||
/* .eta = */ eta,
|
/* .tau = */ tau,
|
||||||
/* .mu = */ 2.0f*tau,
|
/* .eta = */ eta,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .mu = */ 2.0f*tau,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1505,6 +1544,8 @@ struct llama_sampler * llama_sampler_init_penalties(
|
|||||||
ignore_eos = false;
|
ignore_eos = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
penalty_last_n = std::max(penalty_last_n, 0);
|
||||||
|
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_penalties_i,
|
/* .iface = */ &llama_sampler_penalties_i,
|
||||||
/* .ctx = */ new llama_sampler_penalties {
|
/* .ctx = */ new llama_sampler_penalties {
|
||||||
@ -1568,6 +1609,7 @@ static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_to
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
|
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
|
||||||
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
|
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
|
||||||
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
|
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
|
||||||
@ -1599,3 +1641,31 @@ struct llama_sampler * llama_sampler_init_logit_bias(
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// utils
|
||||||
|
|
||||||
|
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
|
||||||
|
if (smpl->iface == &llama_sampler_dist_i) {
|
||||||
|
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_mirostat_i) {
|
||||||
|
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_mirostat_v2_i) {
|
||||||
|
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_chain_i) {
|
||||||
|
const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
|
||||||
|
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
|
||||||
|
const uint32_t seed = llama_sampler_get_seed(*it);
|
||||||
|
if (seed != LLAMA_DEFAULT_SEED) {
|
||||||
|
return seed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return LLAMA_DEFAULT_SEED;
|
||||||
|
}
|
||||||
|
@ -2156,6 +2156,10 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer
|
|||||||
if (host_buffer) {
|
if (host_buffer) {
|
||||||
buft = ggml_backend_sycl_host_buffer_type();
|
buft = ggml_backend_sycl_host_buffer_type();
|
||||||
}
|
}
|
||||||
|
#elif defined(GGML_USE_CANN)
|
||||||
|
if (host_buffer) {
|
||||||
|
buft = ggml_backend_cann_host_buffer_type();
|
||||||
|
}
|
||||||
#elif defined(GGML_USE_CPU_HBM)
|
#elif defined(GGML_USE_CPU_HBM)
|
||||||
buft = ggml_backend_cpu_hbm_buffer_type();
|
buft = ggml_backend_cpu_hbm_buffer_type();
|
||||||
#elif defined(GGML_USE_VULKAN)
|
#elif defined(GGML_USE_VULKAN)
|
||||||
@ -9258,7 +9262,7 @@ static struct ggml_tensor * llm_build_copy_mask_state(
|
|||||||
// FIXME: zero-out NANs?
|
// FIXME: zero-out NANs?
|
||||||
states = ggml_mul(ctx, states, state_mask);
|
states = ggml_mul(ctx, states, state_mask);
|
||||||
|
|
||||||
// copy states which won't be changed further (between n_seqs and n_rs)
|
// copy states which won't be changed further (between n_seqs and n_kv)
|
||||||
ggml_build_forward_expand(graph,
|
ggml_build_forward_expand(graph,
|
||||||
ggml_cpy(ctx,
|
ggml_cpy(ctx,
|
||||||
ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
|
ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
|
||||||
@ -9877,8 +9881,8 @@ struct llm_build_context {
|
|||||||
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
|
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
|
||||||
// find result_norm tensor for input
|
// find result_norm tensor for input
|
||||||
struct ggml_tensor * inp = nullptr;
|
struct ggml_tensor * inp = nullptr;
|
||||||
for (int i = gf->n_nodes - 1; i >= 0; --i) {
|
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
||||||
inp = gf->nodes[i];
|
inp = ggml_graph_node(gf, i);
|
||||||
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
||||||
break;
|
break;
|
||||||
} else {
|
} else {
|
||||||
@ -16076,19 +16080,21 @@ static int llama_decode_internal(
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
|
||||||
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= lctx.model.vocab.n_vocab) {
|
|
||||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
const auto & cparams = lctx.cparams;
|
const auto & cparams = lctx.cparams;
|
||||||
|
|
||||||
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
|
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
|
||||||
|
|
||||||
|
if (batch_all.token) {
|
||||||
|
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||||
|
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= model.vocab.n_vocab) {
|
||||||
|
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
||||||
|
|
||||||
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
||||||
@ -16205,8 +16211,8 @@ static int llama_decode_internal(
|
|||||||
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
|
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
|
||||||
|
|
||||||
// the output is always the last tensor in the graph
|
// the output is always the last tensor in the graph
|
||||||
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
struct ggml_tensor * res = ggml_graph_node(gf, -1);
|
||||||
struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
|
struct ggml_tensor * embd = ggml_graph_node(gf, -2);
|
||||||
|
|
||||||
if (lctx.n_outputs == 0) {
|
if (lctx.n_outputs == 0) {
|
||||||
// no output
|
// no output
|
||||||
@ -16215,9 +16221,9 @@ static int llama_decode_internal(
|
|||||||
} else if (cparams.embeddings) {
|
} else if (cparams.embeddings) {
|
||||||
res = nullptr; // do not extract logits for embedding case
|
res = nullptr; // do not extract logits for embedding case
|
||||||
embd = nullptr;
|
embd = nullptr;
|
||||||
for (int i = gf->n_nodes - 1; i >= 0; --i) {
|
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
||||||
if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
|
if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) {
|
||||||
embd = gf->nodes[i];
|
embd = ggml_graph_node(gf, i);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -16375,19 +16381,21 @@ static int llama_encode_internal(
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
|
||||||
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= lctx.model.vocab.n_vocab) {
|
|
||||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
const auto & cparams = lctx.cparams;
|
const auto & cparams = lctx.cparams;
|
||||||
|
|
||||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||||
|
|
||||||
|
if (batch.token) {
|
||||||
|
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||||||
|
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= model.vocab.n_vocab) {
|
||||||
|
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
|
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
|
||||||
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
|
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
|
||||||
|
|
||||||
@ -16432,15 +16440,15 @@ static int llama_encode_internal(
|
|||||||
// there are two cases here
|
// there are two cases here
|
||||||
if (llama_model_has_decoder(&lctx.model)) {
|
if (llama_model_has_decoder(&lctx.model)) {
|
||||||
// first case is an encoder-decoder T5 model where embeddings are passed to decoder
|
// first case is an encoder-decoder T5 model where embeddings are passed to decoder
|
||||||
embd = gf->nodes[gf->n_nodes - 1];
|
embd = ggml_graph_node(gf, -1);
|
||||||
GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
|
GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
|
||||||
} else {
|
} else {
|
||||||
// second case is an encoder-only T5 model
|
// second case is an encoder-only T5 model
|
||||||
if (cparams.embeddings) {
|
if (cparams.embeddings) {
|
||||||
// only output embeddings if required
|
// only output embeddings if required
|
||||||
embd = gf->nodes[gf->n_nodes - 1];
|
embd = ggml_graph_node(gf, -1);
|
||||||
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
||||||
embd = gf->nodes[gf->n_nodes - 2];
|
embd = ggml_graph_node(gf, -2);
|
||||||
}
|
}
|
||||||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
||||||
}
|
}
|
||||||
@ -17530,6 +17538,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
quantize &= name.find("time_mix_first.weight") == std::string::npos;
|
quantize &= name.find("time_mix_first.weight") == std::string::npos;
|
||||||
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
|
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
|
||||||
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
||||||
|
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
|
||||||
|
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
|
||||||
|
|
||||||
// do not quantize relative position bias (T5)
|
// do not quantize relative position bias (T5)
|
||||||
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
||||||
@ -18486,7 +18496,7 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
|
|
||||||
// note: the number of splits during measure is higher than during inference due to the kv shift
|
// note: the number of splits during measure is higher than during inference due to the kv shift
|
||||||
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
|
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
|
||||||
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
|
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, ggml_graph_n_nodes(gf));
|
||||||
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
|
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -20666,6 +20676,7 @@ const char * llama_print_system_info(void) {
|
|||||||
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||||||
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||||||
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||||||
|
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
||||||
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||||||
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
||||||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||||
|
@ -519,7 +519,7 @@ struct test_case {
|
|||||||
|
|
||||||
// add sentinels as graph nodes so that they are checked in the callback
|
// add sentinels as graph nodes so that they are checked in the callback
|
||||||
for (ggml_tensor * sentinel : sentinels) {
|
for (ggml_tensor * sentinel : sentinels) {
|
||||||
gf->nodes[gf->n_nodes++] = sentinel;
|
ggml_graph_add_node(gf, sentinel);
|
||||||
}
|
}
|
||||||
|
|
||||||
// randomize tensors
|
// randomize tensors
|
||||||
@ -679,9 +679,9 @@ struct test_case {
|
|||||||
|
|
||||||
// duplicate the op
|
// duplicate the op
|
||||||
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
|
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
|
||||||
int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
|
int n_runs = std::min((size_t) ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
|
||||||
for (int i = 1; i < n_runs; i++) {
|
for (int i = 1; i < n_runs; i++) {
|
||||||
gf->nodes[gf->n_nodes++] = out;
|
ggml_graph_add_node(gf, out);
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate memory
|
// calculate memory
|
||||||
@ -696,11 +696,11 @@ struct test_case {
|
|||||||
}
|
}
|
||||||
return size;
|
return size;
|
||||||
};
|
};
|
||||||
for (int i = 0; i < gf->n_nodes; i++) {
|
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
||||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
|
if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
mem += tensor_op_size(gf->nodes[i]);
|
mem += tensor_op_size(ggml_graph_node(gf, i));
|
||||||
}
|
}
|
||||||
|
|
||||||
// run
|
// run
|
||||||
@ -804,7 +804,7 @@ struct test_case {
|
|||||||
ggml_graph_cpy(gf, gb);
|
ggml_graph_cpy(gf, gb);
|
||||||
ggml_build_backward_expand(ctx, gf, gb, false);
|
ggml_build_backward_expand(ctx, gf, gb, false);
|
||||||
if (expect.size() != 1 || expect[0] != 0.0f) {
|
if (expect.size() != 1 || expect[0] != 0.0f) {
|
||||||
GGML_ASSERT(gb->n_nodes > gf->n_nodes);
|
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
|
||||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || t->grad->op != GGML_OP_NONE);
|
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || t->grad->op != GGML_OP_NONE);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user