mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 11:24:35 +00:00
Implement non-mapped async IO for CUDA on Windows. (#7896)
* Implement non-mapped async IO for CUDA on Windows. On a fast Gen5 NVMe drive this change improves model load time by >3x while it should be the same (or slightly faster) on any other drive. * Free resources except for backend. * Change assertions to exceptions in llama_file, find correct cuda backend to create CUDA resources and respect the use_mmap flag again for CUDA. * Apply suggestions from code review Co-authored-by: slaren <slarengh@gmail.com> * Fix editorconfig and unused variable * Fix issues with Windows build --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
21be9cab94
commit
6a2f0b3474
204
llama.cpp
204
llama.cpp
@ -1278,6 +1278,126 @@ struct no_init {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_file {
|
struct llama_file {
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
|
FILE * fp;
|
||||||
|
HANDLE fp_win32;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::string GetErrorMessageWin32(DWORD error_code) const {
|
||||||
|
std::string ret;
|
||||||
|
LPSTR lpMsgBuf = NULL;
|
||||||
|
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||||
|
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
|
||||||
|
if (!bufLen) {
|
||||||
|
ret = format("Win32 error code: %s", error_code);
|
||||||
|
} else {
|
||||||
|
ret = lpMsgBuf;
|
||||||
|
LocalFree(lpMsgBuf);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
llama_file(const char * fname, const char * mode) {
|
||||||
|
fp = ggml_fopen(fname, mode);
|
||||||
|
if (fp == NULL) {
|
||||||
|
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||||||
|
}
|
||||||
|
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
|
||||||
|
seek(0, SEEK_END);
|
||||||
|
size = tell();
|
||||||
|
seek(0, SEEK_SET);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t tell() const {
|
||||||
|
// SetFilePointerEx returns the current position when seeking relative 0 bytes
|
||||||
|
LARGE_INTEGER li;
|
||||||
|
li.QuadPart = 0;
|
||||||
|
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
|
||||||
|
if (!ret) {
|
||||||
|
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||||
|
}
|
||||||
|
|
||||||
|
return li.QuadPart;
|
||||||
|
}
|
||||||
|
|
||||||
|
void seek(size_t offset, int whence) const {
|
||||||
|
// no need to convert SEEK_* to FILE_*. The enums are the same.
|
||||||
|
// Still, keep static asserts to avoid failures in the future.
|
||||||
|
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
|
||||||
|
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
|
||||||
|
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
|
||||||
|
|
||||||
|
LARGE_INTEGER li;
|
||||||
|
li.QuadPart = offset;
|
||||||
|
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
|
||||||
|
if (!ret) {
|
||||||
|
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void read_raw(void * ptr, size_t len) const {
|
||||||
|
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
|
||||||
|
// use the Win32 API to do file io instead of the C/C++ library functions.
|
||||||
|
|
||||||
|
// There are conditions under which ReadFile cannot read chunks >64MB.
|
||||||
|
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||||||
|
size_t bytes_read = 0;
|
||||||
|
while (bytes_read < len) {
|
||||||
|
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
|
||||||
|
DWORD chunk_read = 0;
|
||||||
|
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
|
||||||
|
if (!result) {
|
||||||
|
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||||
|
}
|
||||||
|
if (chunk_read < chunk_size || chunk_read == 0) {
|
||||||
|
throw std::runtime_error("unexpectedly reached end of file");
|
||||||
|
}
|
||||||
|
|
||||||
|
bytes_read += chunk_read;
|
||||||
|
} ;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t read_u32() const {
|
||||||
|
uint32_t val;
|
||||||
|
read_raw(&val, sizeof(val));
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_raw(const void * ptr, size_t len) const {
|
||||||
|
// There are conditions under which WriteFile cannot write chunks >64MB.
|
||||||
|
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||||||
|
size_t bytes_written = 0;
|
||||||
|
while (bytes_written < len) {
|
||||||
|
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
|
||||||
|
DWORD chunk_written = 0;
|
||||||
|
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
|
||||||
|
if (!result) {
|
||||||
|
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||||||
|
}
|
||||||
|
if (chunk_written < chunk_size || chunk_written == 0) {
|
||||||
|
throw std::runtime_error("unexpectedly failed to write bytes");
|
||||||
|
}
|
||||||
|
|
||||||
|
bytes_written += chunk_written;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_u32(std::uint32_t val) const {
|
||||||
|
write_raw(&val, sizeof(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_file() {
|
||||||
|
if (fp) {
|
||||||
|
std::fclose(fp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
// use FILE * so we don't have to re-open the file to mmap
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
FILE * fp;
|
FILE * fp;
|
||||||
size_t size;
|
size_t size;
|
||||||
@ -1298,7 +1418,10 @@ struct llama_file {
|
|||||||
#else
|
#else
|
||||||
long ret = std::ftell(fp);
|
long ret = std::ftell(fp);
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
if (ret == -1) {
|
||||||
|
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
|
|
||||||
return (size_t) ret;
|
return (size_t) ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1308,7 +1431,9 @@ struct llama_file {
|
|||||||
#else
|
#else
|
||||||
int ret = std::fseek(fp, (long) offset, whence);
|
int ret = std::fseek(fp, (long) offset, whence);
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ret == 0); // same
|
if (ret != 0) {
|
||||||
|
throw std::runtime_error(format("seek error: %s", strerror(errno)));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void read_raw(void * ptr, size_t len) const {
|
void read_raw(void * ptr, size_t len) const {
|
||||||
@ -1351,6 +1476,7 @@ struct llama_file {
|
|||||||
std::fclose(fp);
|
std::fclose(fp);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
};
|
};
|
||||||
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
||||||
|
|
||||||
@ -3721,6 +3847,44 @@ struct llama_model_loader {
|
|||||||
std::vector<no_init<uint8_t>> read_buf;
|
std::vector<no_init<uint8_t>> read_buf;
|
||||||
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
|
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
|
||||||
|
|
||||||
|
#if defined(GGML_USE_CUDA)
|
||||||
|
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
|
||||||
|
// NVMe raid configurations might require more / larger buffers.
|
||||||
|
constexpr size_t num_buffers = 4;
|
||||||
|
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
|
||||||
|
|
||||||
|
std::vector<ggml_backend_buffer_t> host_buffers;
|
||||||
|
std::vector<void*> host_ptrs;
|
||||||
|
std::vector<ggml_backend_event_t> events;
|
||||||
|
size_t buffer_idx = 0; // buffer to use for async loads
|
||||||
|
|
||||||
|
ggml_backend_t cuda_backend = nullptr;
|
||||||
|
if (!use_mmap && !check_tensors) {
|
||||||
|
// When not using mmaped io use async uploads from pinned memory to GPU memory.
|
||||||
|
// First determine if the CUDA backend is active, and if so, determine the device ID.
|
||||||
|
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
|
||||||
|
if (buf) {
|
||||||
|
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
|
||||||
|
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
|
||||||
|
auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
|
||||||
|
if (buffer_type == cuda_buffer_type) {
|
||||||
|
cuda_backend = ggml_backend_cuda_init(i);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
|
||||||
|
if (cuda_backend) {
|
||||||
|
for (size_t idx = 0; idx < num_buffers; ++idx) {
|
||||||
|
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
|
||||||
|
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
|
||||||
|
events.emplace_back(ggml_backend_event_new(cuda_backend));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||||
const auto * weight = get_weight(ggml_get_name(cur));
|
const auto * weight = get_weight(ggml_get_name(cur));
|
||||||
if (weight == nullptr) {
|
if (weight == nullptr) {
|
||||||
@ -3776,6 +3940,29 @@ struct llama_model_loader {
|
|||||||
}));
|
}));
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
#if defined(GGML_USE_CUDA)
|
||||||
|
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
|
||||||
|
if (cuda_backend) {
|
||||||
|
file->seek(weight->offs, SEEK_SET);
|
||||||
|
|
||||||
|
size_t bytes_read = 0;
|
||||||
|
|
||||||
|
while (bytes_read < n_size) {
|
||||||
|
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
|
||||||
|
|
||||||
|
ggml_backend_event_synchronize(events[buffer_idx]);
|
||||||
|
file->read_raw(host_ptrs[buffer_idx], read_iteration);
|
||||||
|
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
|
||||||
|
ggml_backend_event_record(events[buffer_idx]);
|
||||||
|
|
||||||
|
bytes_read += read_iteration;
|
||||||
|
++buffer_idx;
|
||||||
|
buffer_idx %= num_buffers;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
{
|
||||||
read_buf.resize(n_size);
|
read_buf.resize(n_size);
|
||||||
file->seek(weight->offs, SEEK_SET);
|
file->seek(weight->offs, SEEK_SET);
|
||||||
file->read_raw(read_buf.data(), n_size);
|
file->read_raw(read_buf.data(), n_size);
|
||||||
@ -3785,10 +3972,23 @@ struct llama_model_loader {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
size_done += n_size;
|
size_done += n_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if defined(GGML_USE_CUDA)
|
||||||
|
// free temporary resources used for async cuda uploads
|
||||||
|
if (cuda_backend) {
|
||||||
|
for (size_t idx = 0; idx < num_buffers;++idx) {
|
||||||
|
ggml_backend_event_synchronize(events[idx]);
|
||||||
|
ggml_backend_event_free(events[idx]);
|
||||||
|
ggml_backend_buffer_free(host_buffers[idx]);
|
||||||
|
}
|
||||||
|
ggml_backend_free(cuda_backend);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
// check validation results
|
// check validation results
|
||||||
bool validation_failed = false;
|
bool validation_failed = false;
|
||||||
for (auto & future : validation_result) {
|
for (auto & future : validation_result) {
|
||||||
|
Loading…
Reference in New Issue
Block a user