From 4090ea5501c702cd858095c394ba068919c56cc8 Mon Sep 17 00:00:00 2001 From: Alex Tuddenham <61622354+AlexsCode@users.noreply.github.com> Date: Sun, 7 Jul 2024 15:59:14 +0100 Subject: [PATCH 1/3] ci : add checks for cmake,make and ctest in ci/run.sh (#8200) * Added checks for cmake,make and ctest * Removed erroneous whitespace --- ci/run.sh | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/ci/run.sh b/ci/run.sh index 9703b77ce..58022c7dc 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -103,6 +103,9 @@ function gg_run_ctest_debug { set -e + # Check cmake, make and ctest are installed + gg_check_build_requirements + (time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log @@ -131,6 +134,9 @@ function gg_run_ctest_release { set -e + # Check cmake, make and ctest are installed + gg_check_build_requirements + (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log @@ -701,6 +707,20 @@ function gg_run_embd_bge_small { set +e } +function gg_check_build_requirements { + if ! command -v cmake &> /dev/null; then + gg_printf 'cmake not found, please install' + fi + + if ! command -v make &> /dev/null; then + gg_printf 'make not found, please install' + fi + + if ! command -v ctest &> /dev/null; then + gg_printf 'ctest not found, please install' + fi +} + function gg_sum_embd_bge_small { gg_printf '### %s\n\n' "${ci}" From a8db2a9ce64cd4417f6a312ab61858f17f0f8584 Mon Sep 17 00:00:00 2001 From: Denis Spasyuk <34203011+dspasyuk@users.noreply.github.com> Date: Sun, 7 Jul 2024 09:08:28 -0600 Subject: [PATCH 2/3] Update llama-cli documentation (#8315) * Update README.md * Update README.md * Update README.md fixed llama-cli/main, templates on some cmds added chat template sections and fixed typos in some areas * Update README.md * Update README.md * Update README.md --- examples/main/README.md | 103 +++++++++++++++++++++------------------- 1 file changed, 53 insertions(+), 50 deletions(-) diff --git a/examples/main/README.md b/examples/main/README.md index 61e4a42f7..9396a34fa 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -1,6 +1,6 @@ # llama.cpp/examples/main -This example program allows you to use various LLaMA language models in an easy and efficient way. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts. +This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts. ## Table of Contents @@ -17,60 +17,59 @@ This example program allows you to use various LLaMA language models in an easy To get started right away, run the following command, making sure to use the correct path for the model you have: -#### Unix-based systems (Linux, macOS, etc.): +First, we will need to download a model. In these examples, we will use the Gemma model from the ggml-org repo on Hugging Face. +[https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true) + +Once downloaded, place your model in the models folder in llama.cpp. + +### Unix-based systems (Linux, macOS, etc.): + +##### Input prompt (One-and-done) ```bash -./llama-cli -m models/7B/ggml-model.bin --prompt "Once upon a time" +./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time" ``` - -#### Windows: - -```powershell -llama-cli.exe -m models\7B\ggml-model.bin --prompt "Once upon a time" -``` - -For an interactive experience, try this command: - -#### Unix-based systems (Linux, macOS, etc.): +##### Conversation mode (Allow for continuous interaction with the model) ```bash -./llama-cli -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \ -'User: Hi -AI: Hello. I am an AI chatbot. Would you like to talk? -User: Sure! -AI: What would you like to talk about? -User:' +./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma ``` -#### Windows: - -```powershell -llama-cli.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:" -``` - -The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it): - -#### Unix-based systems (Linux, macOS, etc.): - +##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it): ```bash -./llama-cli -m models/7B/ggml-model.bin --ignore-eos -n -1 +./llama-cli -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1 ``` -#### Windows: +### Windows: + +##### Input prompt (One-and-done) +```powershell +./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time" +``` +##### Conversation mode (Allow for continuous interaction with the model) ```powershell -llama-cli.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 +./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma +``` + +#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it): + +```powershell +llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1 ``` ## Common Options In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models: -- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set). -- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf). +- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/gemma-1.1-7b-it.Q4_K_M.gguf`; inferred from `--model-url` if set). +- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g [https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)). - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. - `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. +- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\' +- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has. +- - `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance. ## Input Prompts @@ -90,6 +89,7 @@ In interactive mode, users can participate in text generation by injecting their - `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model. - `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation. +- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: false) - `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text. By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. @@ -117,6 +117,13 @@ The `--in-suffix` flag is used to add a suffix after your input. This is useful ```sh ./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:" ``` +When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled + +### Chat templates + + `--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled. + + Example usage: `--chat-template gemma` ## Context Management @@ -124,9 +131,7 @@ During text generation, LLaMA models have a limited context size, which means th ### Context Size -The `--ctx-size` option allows you to set the size of the prompt context used by the LLaMA models during text generation. A larger context size helps the model to better comprehend and generate responses for longer input or conversations. - -- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results. +- `-c N, --ctx-size N`: Set the size of the prompt context (default: 0, 0 = loaded from model). The LLaMA models were built with a context of 2048-8192, which will yield the best results on longer input/inference. ### Extended Context Size @@ -148,15 +153,15 @@ The following options allow you to control the text generation process and fine- ### Number of Tokens to Predict -- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled) +- `-n N, --predict N`: Set the number of tokens to predict when generating text (default: -1, -1 = infinity, -2 = until context filled) -The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. +The `--predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. -A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output. +A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in a significant pause in output. If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled. -It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter. +It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode, text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `--predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter. ### Temperature @@ -164,15 +169,15 @@ It is important to note that the generated text may be shorter than the specifie Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run. -Example usage: `--temp 0.5` +Example usage: `--temp 0` ### Repeat Penalty -- `--repeat-penalty N`: Control the repetition of token sequences in the generated text (default: 1.1). +- `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled). - `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size). - `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty. -The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.1. +The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1. The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`). @@ -196,19 +201,19 @@ Top-p sampling, also known as nucleus sampling, is another text generation metho Example usage: `--top-p 0.95` -### Min P Sampling +### Min-P Sampling -- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.05). +- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.1). The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. Example usage: `--min-p 0.05` -### Tail Free Sampling (TFS) +### Tail-Free Sampling (TFS) - `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled). -Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS. +Tail-free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks at how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens and thus disables the effect of TFS. Example usage: `--tfs 0.95` @@ -307,10 +312,8 @@ These options provide extra functionality and customization when running the LLa - `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated. - `--verbose-prompt`: Print the prompt before generating text. -- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. - - `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache. From 3fd62a6b1c9ca7b7c0093e984cc9c133c6f2726d Mon Sep 17 00:00:00 2001 From: compilade Date: Sun, 7 Jul 2024 15:04:39 -0400 Subject: [PATCH 3/3] py : type-check all Python scripts with Pyright (#8341) * py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors. --- .devops/nix/package.nix | 16 +++ .github/workflows/python-type-check.yml | 38 +++++++ convert_hf_to_gguf.py | 20 ++-- convert_llama_ggml_to_gguf.py | 3 +- examples/convert_legacy_llama.py | 21 ++-- .../convert_finetune_checkpoint_to_gguf.py | 2 +- examples/json_schema_pydantic_example.py | 5 +- examples/json_schema_to_grammar.py | 12 ++- .../llava/convert_image_encoder_to_gguf.py | 10 +- examples/llava/llava_surgery_v2.py | 10 +- examples/pydantic_models_to_grammar.py | 35 +++--- .../pydantic_models_to_grammar_examples.py | 7 +- examples/server/bench/bench.py | 11 +- examples/server/tests/features/steps/steps.py | 100 +++++++++--------- examples/server/tests/requirements.txt | 4 +- examples/server_embd.py | 4 +- .../convert_train_checkpoint_to_gguf.py | 2 +- ggml/ggml_vk_generate_shaders.py | 4 +- gguf-py/gguf/gguf_reader.py | 6 +- gguf-py/gguf/lazy.py | 31 +++--- gguf-py/scripts/__init__.py | 2 + gguf-py/scripts/gguf_hash.py | 6 +- gguf-py/scripts/gguf_new_metadata.py | 2 + gguf-py/tests/test_gguf.py | 2 +- pyrightconfig.json | 20 +++- requirements/requirements-all.txt | 12 +++ .../requirements-compare-llama-bench.txt | 2 + requirements/requirements-pydantic.txt | 2 + .../requirements-test-tokenizer-random.txt | 1 + scripts/check-requirements.sh | 12 +-- scripts/compare-llama-bench.py | 8 +- scripts/gen-unicode-data.py | 16 +-- tests/test-tokenizer-random.py | 44 ++++---- 33 files changed, 297 insertions(+), 173 deletions(-) create mode 100644 .github/workflows/python-type-check.yml create mode 100644 requirements/requirements-all.txt create mode 100644 requirements/requirements-compare-llama-bench.txt create mode 100644 requirements/requirements-pydantic.txt create mode 100644 requirements/requirements-test-tokenizer-random.txt diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index 49e9b7528..00be596ce 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -89,6 +89,22 @@ let ps.tiktoken ps.torchWithoutCuda ps.transformers + + # server bench + ps.matplotlib + + # server tests + ps.openai + ps.behave + ps.prometheus-client + + # for examples/pydantic-models-to-grammar-examples.py + ps.docstring-parser + ps.pydantic + + # for scripts/compare-llama-bench.py + ps.gitpython + ps.tabulate ] ); diff --git a/.github/workflows/python-type-check.yml b/.github/workflows/python-type-check.yml new file mode 100644 index 000000000..e5ff5e6d7 --- /dev/null +++ b/.github/workflows/python-type-check.yml @@ -0,0 +1,38 @@ +name: Python Type-Check + +on: + push: + paths: + - '.github/workflows/python-type-check.yml' + - '**.py' + - '**/requirements*.txt' + pull_request: + paths: + - '.github/workflows/python-type-check.yml' + - '**.py' + - '**/requirements*.txt' + +concurrency: + group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} + cancel-in-progress: true + +jobs: + python-type-check: + runs-on: ubuntu-latest + name: pyright type-check + steps: + - name: Check out source repository + uses: actions/checkout@v4 + - name: Set up Python environment + uses: actions/setup-python@v5 + with: + python-version: "3.11" + - name: Install Python dependencies + # TODO: use a venv + run: pip install -r requirements/requirements-all.txt + - name: Type-check with Pyright + uses: jakebailey/pyright-action@v2 + with: + version: 1.1.370 + level: warning + warnings: true diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 6ee41d3a1..6cea73f08 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -265,7 +265,7 @@ class Model: break for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)): - data: np.ndarray = data # type hint + data: np.ndarray # type hint n_dims = len(data.shape) data_dtype = data.dtype data_qtype: gguf.GGMLQuantizationType | None = None @@ -599,10 +599,6 @@ class Model: tokenizer_path = self.dir_model / 'tokenizer.model' - tokens: list[bytes] = [] - scores: list[float] = [] - toktypes: list[int] = [] - if not tokenizer_path.is_file(): raise FileNotFoundError(f"File not found: {tokenizer_path}") @@ -2120,7 +2116,7 @@ class InternLM2Model(Model): logger.error(f'Error: Missing {tokenizer_path}') sys.exit(1) - sentencepiece_model = model.ModelProto() + sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix @@ -2972,16 +2968,16 @@ class T5Model(Model): if not tokenizer_path.is_file(): raise FileNotFoundError(f"File not found: {tokenizer_path}") - sentencepiece_model = model.ModelProto() + sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) # some models like Pile-T5 family use BPE tokenizer instead of Unigram - if sentencepiece_model.trainer_spec.model_type == 2: # BPE + if sentencepiece_model.trainer_spec.model_type == 2: # BPE # assure the tokenizer model file name is correct assert tokenizer_path.name == 'tokenizer.model' return self._set_vocab_sentencepiece() else: - assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces @@ -3152,7 +3148,7 @@ class JaisModel(Model): # but Jais's PyTorch model simply precalculates the slope values and places them # in relative_pes.slopes n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) - first_val = float(data_torch._data[0]) + first_val = float(data_torch[0].item()) self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) return tensors @@ -3186,7 +3182,7 @@ class ChatGLMModel(Model): def set_vocab_chatglm3(self): dir_model = self.dir_model hparams = self.hparams - tokens: list[bytearray] = [] + tokens: list[bytes] = [] toktypes: list[int] = [] scores: list[float] = [] @@ -3335,7 +3331,7 @@ class ChatGLMModel(Model): special_vocab.add_to_gguf(self.gguf_writer) def set_gguf_parameters(self): - self.gguf_writer.add_name(self.hparams.get("_name_or_path").split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b + self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) n_head_kv = self.hparams.get("multi_query_group_num", n_head) diff --git a/convert_llama_ggml_to_gguf.py b/convert_llama_ggml_to_gguf.py index 9349de3b3..95ea831a5 100755 --- a/convert_llama_ggml_to_gguf.py +++ b/convert_llama_ggml_to_gguf.py @@ -354,7 +354,8 @@ class GGMLToGGUF: def handle_metadata(cfg, hp): - import convert + import examples.convert_legacy_llama as convert + assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory' hf_config_path = cfg.model_metadata_dir / "config.json" orig_config_path = cfg.model_metadata_dir / "params.json" diff --git a/examples/convert_legacy_llama.py b/examples/convert_legacy_llama.py index 721a57c00..c2c73e8ad 100755 --- a/examples/convert_legacy_llama.py +++ b/examples/convert_legacy_llama.py @@ -353,7 +353,7 @@ class Metadata: version: Optional[str] = None url: Optional[str] = None description: Optional[str] = None - licence: Optional[str] = None + license: Optional[str] = None source_url: Optional[str] = None source_hf_repo: Optional[str] = None @@ -492,12 +492,13 @@ class LazyTensor: LazyModel: TypeAlias = 'dict[str, LazyTensor]' +ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none'] @dataclass class ModelPlus: model: LazyModel paths: list[Path] # Where this was read from. - format: Literal['ggml', 'torch', 'safetensors', 'none'] + format: ModelFormat vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab. @@ -536,7 +537,7 @@ def merge_sharded(models: list[LazyModel]) -> LazyModel: def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: - formats = set(mp.format for mp in models_plus) + formats: set[ModelFormat] = set(mp.format for mp in models_plus) assert len(formats) == 1, "different formats?" format = formats.pop() paths = [path for mp in models_plus for path in mp.paths] @@ -555,7 +556,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: else: model = merge_sharded([mp.model for mp in models_plus]) - return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types + return ModelPlus(model, paths, format, vocab) def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: @@ -805,7 +806,7 @@ class OutputFile: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) - def add_meta_model(self, params: Params, metadata: Metadata) -> None: + def add_meta_model(self, params: Params, metadata: Metadata | None) -> None: # Metadata About The Model And Its Provenence name = "LLaMA" if metadata is not None and metadata.name is not None: @@ -827,8 +828,8 @@ class OutputFile: self.gguf.add_url(metadata.url) if metadata.description is not None: self.gguf.add_description(metadata.description) - if metadata.licence is not None: - self.gguf.add_licence(metadata.licence) + if metadata.license is not None: + self.gguf.add_licence(metadata.license) if metadata.source_url is not None: self.gguf.add_source_url(metadata.source_url) if metadata.source_hf_repo is not None: @@ -943,7 +944,7 @@ class OutputFile: @staticmethod def write_vocab_only( fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None, + endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) @@ -977,7 +978,7 @@ class OutputFile: fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, - metadata: Metadata = None, + metadata: Metadata | None = None, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) @@ -1396,6 +1397,8 @@ def main(args_in: list[str] | None = None) -> None: if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: vocab = model_plus.vocab + assert params is not None + logger.info(f"Vocab info: {vocab}") logger.info(f"Special vocab info: {special_vocab}") model = model_plus.model diff --git a/examples/finetune/convert_finetune_checkpoint_to_gguf.py b/examples/finetune/convert_finetune_checkpoint_to_gguf.py index c89090918..1b79d6995 100644 --- a/examples/finetune/convert_finetune_checkpoint_to_gguf.py +++ b/examples/finetune/convert_finetune_checkpoint_to_gguf.py @@ -74,7 +74,7 @@ class Tensor: if len(self.ne) == 0: self.nbytes = 0 else: - self.nbytes = int(np.product(self.ne)) * 4 + self.nbytes = int(np.prod(self.ne)) * 4 else: raise ValueError(f"Unhandled data type '{self.dtype}'") diff --git a/examples/json_schema_pydantic_example.py b/examples/json_schema_pydantic_example.py index c7ca7b8d9..19c0bdb5b 100644 --- a/examples/json_schema_pydantic_example.py +++ b/examples/json_schema_pydantic_example.py @@ -3,7 +3,7 @@ #! pip install pydantic #! python json_schema_pydantic_example.py -from pydantic import BaseModel, Extra, TypeAdapter +from pydantic import BaseModel, Field, TypeAdapter from annotated_types import MinLen from typing import Annotated, List, Optional import json, requests @@ -17,6 +17,9 @@ if True: The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below) ''' + response_format = None + type_adapter = None + if response_model: type_adapter = TypeAdapter(response_model) schema = type_adapter.json_schema() diff --git a/examples/json_schema_to_grammar.py b/examples/json_schema_to_grammar.py index 072a230f7..a8779bf3b 100755 --- a/examples/json_schema_to_grammar.py +++ b/examples/json_schema_to_grammar.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 +from __future__ import annotations + import argparse import itertools import json @@ -188,7 +190,7 @@ def _generate_min_max_int(min_value: Optional[int], max_value: Optional[int], ou raise RuntimeError("At least one of min_value or max_value must be set") class BuiltinRule: - def __init__(self, content: str, deps: list = None): + def __init__(self, content: str, deps: list | None = None): self.content = content self.deps = deps or [] @@ -248,7 +250,7 @@ class SchemaConverter: def _format_literal(self, literal): escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub( - lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal + lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)) or m.group(0), literal ) return f'"{escaped}"' @@ -403,11 +405,11 @@ class SchemaConverter: i = 0 length = len(pattern) - def to_rule(s: Tuple[str, bool]) -> str: + def to_rule(s: tuple[str, bool]) -> str: (txt, is_literal) = s return "\"" + txt + "\"" if is_literal else txt - def transform() -> Tuple[str, bool]: + def transform() -> tuple[str, bool]: ''' Parse a unit at index i (advancing it), and return its string representation + whether it's a literal. ''' @@ -420,7 +422,7 @@ class SchemaConverter: # We only need a flat structure here to apply repetition operators to the last item, and # to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially # (GBNF's syntax is luckily very close to regular expressions!) - seq: list[Tuple[str, bool]] = [] + seq: list[tuple[str, bool]] = [] def get_dot(): if self._dotall: diff --git a/examples/llava/convert_image_encoder_to_gguf.py b/examples/llava/convert_image_encoder_to_gguf.py index b00bf7c6d..36f6b92fb 100644 --- a/examples/llava/convert_image_encoder_to_gguf.py +++ b/examples/llava/convert_image_encoder_to_gguf.py @@ -185,6 +185,8 @@ else: fout.add_description("two-tower CLIP model") if has_text_encoder: + assert t_hparams is not None + assert tokens is not None # text_model hparams fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"]) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"]) @@ -259,8 +261,8 @@ if has_vision_encoder: if processor is not None: - image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean - image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std + image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue] + image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue] else: image_mean = args.image_mean if args.image_mean is not None else default_image_mean image_std = args.image_std if args.image_std is not None else default_image_std @@ -272,7 +274,7 @@ fout.add_bool("clip.use_gelu", use_gelu) if has_llava_projector: - model.vision_model.encoder.layers.pop(-1) + model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue] projector = torch.load(args.llava_projector) for name, data in projector.items(): name = get_tensor_name(name) @@ -286,7 +288,7 @@ if has_llava_projector: print("Projector tensors added\n") -state_dict = model.state_dict() +state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue] for name, data in state_dict.items(): if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector): # we don't need this diff --git a/examples/llava/llava_surgery_v2.py b/examples/llava/llava_surgery_v2.py index eb56d6988..2d5b32fe6 100644 --- a/examples/llava/llava_surgery_v2.py +++ b/examples/llava/llava_surgery_v2.py @@ -2,7 +2,9 @@ import argparse import glob import os import torch -from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file +from safetensors import safe_open +from safetensors.torch import save_file +from typing import Any, ContextManager, cast # Function to determine if file is a SafeTensor file def is_safetensor_file(file_path): @@ -13,7 +15,7 @@ def is_safetensor_file(file_path): def load_model(file_path): if is_safetensor_file(file_path): tensors = {} - with safe_open(file_path, framework="pt", device="cpu") as f: + with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f: for key in f.keys(): tensors[key] = f.get_tensor(key).clone() # output shape @@ -134,7 +136,7 @@ if len(mm_tensors) == 0: if last_checkpoint is not None: for k, v in last_checkpoint.items(): print(k) - print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.") + print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.") print("No tensors found. Is this a LLaVA model?") exit() @@ -143,8 +145,10 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.") # projector = {name: checkpoint.[name].float() for name in mm_tensors} projector = {} for name in mm_tensors: + assert last_checkpoint is not None projector[name] = last_checkpoint[name].float() for name in first_mm_tensors: + assert first_checkpoint is not None projector[name] = first_checkpoint[name].float() if len(projector) > 0: diff --git a/examples/pydantic_models_to_grammar.py b/examples/pydantic_models_to_grammar.py index f029c73a2..d8145710c 100644 --- a/examples/pydantic_models_to_grammar.py +++ b/examples/pydantic_models_to_grammar.py @@ -6,10 +6,10 @@ import re from copy import copy from enum import Enum from inspect import getdoc, isclass -from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints +from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin from docstring_parser import parse -from pydantic import BaseModel, Field, create_model +from pydantic import BaseModel, create_model if TYPE_CHECKING: from types import GenericAlias @@ -17,6 +17,9 @@ else: # python 3.8 compat from typing import _GenericAlias as GenericAlias +# TODO: fix this +# pyright: reportAttributeAccessIssue=information + class PydanticDataType(Enum): """ @@ -234,8 +237,9 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None # Define the integer part rule integer_part_rule = ( - "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( - f"-min{min_digit}" if min_digit is not None else "") + "integer-part" + + (f"-max{max_digit}" if max_digit is not None else "") + + (f"-min{min_digit}" if min_digit is not None else "") ) # Define the fractional part rule based on precision constraints @@ -458,7 +462,7 @@ def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[Bas if not issubclass(model, BaseModel): # For non-Pydantic classes, generate model_fields from __annotations__ or __init__ if hasattr(model, "__annotations__") and model.__annotations__: - model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} + model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} # pyright: ignore[reportGeneralTypeIssues] else: init_signature = inspect.signature(model.__init__) parameters = init_signature.parameters @@ -680,7 +684,7 @@ def generate_markdown_documentation( str: Generated text documentation. """ documentation = "" - pyd_models = [(model, True) for model in pydantic_models] + pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models] for model, add_prefix in pyd_models: if add_prefix: documentation += f"{model_prefix}: {model.__name__}\n" @@ -700,7 +704,7 @@ def generate_markdown_documentation( # Indenting the fields section documentation += f" {fields_prefix}:\n" else: - documentation += f" Fields:\n" + documentation += f" Fields:\n" # noqa: F541 if isclass(model) and issubclass(model, BaseModel): for name, field_type in model.__annotations__.items(): # if name == "markdown_code_block": @@ -778,7 +782,7 @@ def generate_field_markdown( return field_text if field_description != "": - field_text += f" Description: " + field_description + "\n" + field_text += f" Description: {field_description}\n" # Check for and include field-specific examples if available if hasattr(model, "Config") and hasattr(model.Config, @@ -833,7 +837,7 @@ def generate_text_documentation( str: Generated text documentation. """ documentation = "" - pyd_models = [(model, True) for model in pydantic_models] + pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models] for model, add_prefix in pyd_models: if add_prefix: documentation += f"{model_prefix}: {model.__name__}\n" @@ -1164,7 +1168,7 @@ def create_dynamic_model_from_function(func: Callable[..., Any]): dynamic_fields[param.name] = ( param.annotation if param.annotation != inspect.Parameter.empty else str, default_value) # Creating the dynamic model - dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) # type: ignore[call-overload] + dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) for name, param_doc in param_docs: dynamic_model.model_fields[name].description = param_doc.description @@ -1228,9 +1232,6 @@ def map_grammar_names_to_pydantic_model_class(pydantic_model_list): return output -from enum import Enum - - def json_schema_to_python_types(schema): type_map = { "any": Any, @@ -1275,7 +1276,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name: if items != {}: array = {"properties": items} array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items") - fields[field_name] = (List[array_type], ...) # type: ignore[valid-type] + fields[field_name] = (List[array_type], ...) else: fields[field_name] = (list, ...) elif field_type == "object": @@ -1285,7 +1286,8 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name: required = field_data.get("enum", []) for key, field in fields.items(): if key not in required: - fields[key] = (Optional[fields[key][0]], ...) + optional_type = fields[key][0] + fields[key] = (Optional[optional_type], ...) else: field_type = json_schema_to_python_types(field_type) fields[field_name] = (field_type, ...) @@ -1305,6 +1307,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name: required = dictionary.get("required", []) for key, field in fields.items(): if key not in required: - fields[key] = (Optional[fields[key][0]], ...) + optional_type = fields[key][0] + fields[key] = (Optional[optional_type], ...) custom_model = create_model(model_name, **fields) return custom_model diff --git a/examples/pydantic_models_to_grammar_examples.py b/examples/pydantic_models_to_grammar_examples.py index 160966649..8e7f46cf9 100644 --- a/examples/pydantic_models_to_grammar_examples.py +++ b/examples/pydantic_models_to_grammar_examples.py @@ -1,6 +1,7 @@ # Function calling example using pydantic models. +from __future__ import annotations + import datetime -import importlib import json from enum import Enum from typing import Optional, Union @@ -215,9 +216,9 @@ for call in json_data: if call["function"] == "Calculator": print(Calculator(**call["params"]).run()) elif call["function"] == "get_current_datetime": - print(current_datetime_model(**call["params"]).run()) + print(current_datetime_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue] elif call["function"] == "get_current_weather": - print(current_weather_tool_model(**call["params"]).run()) + print(current_weather_tool_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue] # Should output something like this: # 2024-01-14 13:36:06 # {"location": "London", "temperature": "42", "unit": "celsius"} diff --git a/examples/server/bench/bench.py b/examples/server/bench/bench.py index 4fbbb2032..2daac0884 100644 --- a/examples/server/bench/bench.py +++ b/examples/server/bench/bench.py @@ -1,3 +1,5 @@ +from __future__ import annotations + import argparse import json import os @@ -59,10 +61,11 @@ def main(args_in: list[str] | None = None) -> None: sys.exit(1) # start the benchmark + iterations = 0 + data = {} try: start_benchmark(args) - iterations = 0 with open("results.github.env", 'w') as github_env: # parse output with open('k6-results.json', 'r') as bench_results: @@ -129,7 +132,7 @@ def main(args_in: list[str] | None = None) -> None: timestamps, metric_values = zip(*values) metric_values = [float(value) for value in metric_values] prometheus_metrics[metric] = metric_values - timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps] + timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps] plt.figure(figsize=(16, 10), dpi=80) plt.plot(timestamps_dt, metric_values, label=metric) plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7) @@ -156,7 +159,7 @@ def main(args_in: list[str] | None = None) -> None: plt.close() # Mermaid format in case images upload failed - with (open(f"{metric}.mermaid", 'w') as mermaid_f): + with open(f"{metric}.mermaid", 'w') as mermaid_f: mermaid = ( f"""--- config: @@ -278,7 +281,7 @@ def start_server_background(args): } server_process = subprocess.Popen( args, - **pkwargs) + **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue] def server_log(in_stream, out_stream): for line in iter(in_stream.readline, b''): diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index 7b5dabb01..df0814cc9 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -1,5 +1,4 @@ import asyncio -import collections import json import os import re @@ -8,19 +7,23 @@ import subprocess import sys import threading import time +from collections.abc import Sequence from contextlib import closing from re import RegexFlag +from typing import Any, Literal, cast import aiohttp import numpy as np import openai -from behave import step +from openai.types.chat import ChatCompletionChunk +from behave import step # pyright: ignore[reportAttributeAccessIssue] from behave.api.async_step import async_run_until_complete from prometheus_client import parser +# pyright: reportRedeclaration=false @step("a server listening on {server_fqdn}:{server_port}") -def step_server_config(context, server_fqdn, server_port): +def step_server_config(context, server_fqdn: str, server_port: str): context.server_fqdn = server_fqdn context.server_port = int(server_port) context.n_threads = None @@ -74,34 +77,34 @@ def step_server_config(context, server_fqdn, server_port): @step('a model file {hf_file} from HF repo {hf_repo}') -def step_download_hf_model(context, hf_file, hf_repo): +def step_download_hf_model(context, hf_file: str, hf_repo: str): context.model_hf_repo = hf_repo context.model_hf_file = hf_file context.model_file = os.path.basename(hf_file) @step('a model file {model_file}') -def step_model_file(context, model_file): +def step_model_file(context, model_file: str): context.model_file = model_file @step('a model url {model_url}') -def step_model_url(context, model_url): +def step_model_url(context, model_url: str): context.model_url = model_url @step('a model alias {model_alias}') -def step_model_alias(context, model_alias): +def step_model_alias(context, model_alias: str): context.model_alias = model_alias @step('{seed:d} as server seed') -def step_seed(context, seed): +def step_seed(context, seed: int): context.server_seed = seed @step('{ngl:d} GPU offloaded layers') -def step_n_gpu_layer(context, ngl): +def step_n_gpu_layer(context, ngl: int): if 'N_GPU_LAYERS' in os.environ: new_ngl = int(os.environ['N_GPU_LAYERS']) if context.debug: @@ -111,37 +114,37 @@ def step_n_gpu_layer(context, ngl): @step('{n_threads:d} threads') -def step_n_threads(context, n_threads): +def step_n_threads(context, n_threads: int): context.n_thread = n_threads @step('{draft:d} as draft') -def step_draft(context, draft): +def step_draft(context, draft: int): context.draft = draft @step('{n_ctx:d} KV cache size') -def step_n_ctx(context, n_ctx): +def step_n_ctx(context, n_ctx: int): context.n_ctx = n_ctx @step('{n_slots:d} slots') -def step_n_slots(context, n_slots): +def step_n_slots(context, n_slots: int): context.n_slots = n_slots @step('{n_predict:d} server max tokens to predict') -def step_server_n_predict(context, n_predict): +def step_server_n_predict(context, n_predict: int): context.n_server_predict = n_predict @step('{slot_save_path} as slot save path') -def step_slot_save_path(context, slot_save_path): +def step_slot_save_path(context, slot_save_path: str): context.slot_save_path = slot_save_path @step('using slot id {id_slot:d}') -def step_id_slot(context, id_slot): +def step_id_slot(context, id_slot: int): context.id_slot = id_slot @@ -191,7 +194,7 @@ def step_start_server(context): @step("the server is {expecting_status}") @async_run_until_complete -async def step_wait_for_the_server_to_be_started(context, expecting_status): +async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str): match expecting_status: case 'healthy': await wait_for_health_status(context, context.base_url, 200, 'ok', @@ -221,7 +224,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status): @step('all slots are {expected_slot_status_string}') @async_run_until_complete -async def step_all_slots_status(context, expected_slot_status_string): +async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str): match expected_slot_status_string: case 'idle': expected_slot_status = 0 @@ -237,7 +240,7 @@ async def step_all_slots_status(context, expected_slot_status_string): @step('a completion request with {api_error} api error') @async_run_until_complete -async def step_request_completion(context, api_error): +async def step_request_completion(context, api_error: Literal['raised'] | str): expect_api_error = api_error == 'raised' seeds = await completions_seed(context, num_seeds=1) completion = await request_completion(context.prompts.pop(), @@ -777,8 +780,8 @@ def step_assert_metric_value(context, metric_name, metric_value): def step_available_models(context): # openai client always expects an api_key openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope' - openai.api_base = f'{context.base_url}/v1' - context.models = openai.Model.list().data + openai.base_url = f'{context.base_url}/v1/' + context.models = openai.models.list().data @step('{n_model:d} models are supported') @@ -789,7 +792,7 @@ def step_supported_models(context, n_model): @step('model {i_model:d} is {param} {preposition} {param_value}') -def step_supported_models(context, i_model, param, preposition, param_value): +def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str): assert i_model < len(context.models) model = context.models[i_model] @@ -798,7 +801,7 @@ def step_supported_models(context, i_model, param, preposition, param_value): case 'identified': value = model.id case 'trained': - value = str(model.meta.n_ctx_train) + value = str(model.meta["n_ctx_train"]) case _: assert False, "param {param} not supported" assert param_value == value, f"model param {param} {value} != {param_value}" @@ -810,6 +813,7 @@ async def concurrent_requests(context, f_completion, *args, **kwargs): print(f"starting {context.n_prompts} concurrent completion requests...") assert context.n_prompts > 0 seeds = await completions_seed(context) + assert seeds is not None for prompt_no in range(context.n_prompts): shifted_args = [context.prompts.pop(), seeds[prompt_no], *args] context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs))) @@ -861,7 +865,7 @@ async def request_completion(prompt, id_slot=None, expect_api_error=None, user_api_key=None, - temperature=None): + temperature=None) -> int | dict[str, Any]: if debug: print(f"Sending completion request: {prompt}") origin = "my.super.domain" @@ -899,8 +903,8 @@ async def request_completion(prompt, async def oai_chat_completions(user_prompt, seed, system_prompt, - base_url, - base_path, + base_url: str, + base_path: str, async_client, debug=False, temperature=None, @@ -909,7 +913,7 @@ async def oai_chat_completions(user_prompt, enable_streaming=None, response_format=None, user_api_key=None, - expect_api_error=None): + expect_api_error=None) -> int | dict[str, Any]: if debug: print(f"Sending OAI Chat completions request: {user_prompt}") # openai client always expects an api key @@ -989,32 +993,35 @@ async def oai_chat_completions(user_prompt, else: try: openai.api_key = user_api_key - openai.api_base = f'{base_url}{base_path}' - chat_completion = openai.Completion.create( + openai.base_url = f'{base_url}{base_path.removesuffix("chat")}' + assert model is not None + chat_completion = openai.chat.completions.create( messages=payload['messages'], model=model, max_tokens=n_predict, stream=enable_streaming, - response_format=payload.get('response_format'), + response_format=payload.get('response_format') or openai.NOT_GIVEN, seed=seed, temperature=payload['temperature'] ) - except openai.error.AuthenticationError as e: + except openai.AuthenticationError as e: if expect_api_error is not None and expect_api_error: return 401 else: assert False, f'error raised: {e}' if enable_streaming: + chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion) for chunk in chat_completion: assert len(chunk.choices) == 1 delta = chunk.choices[0].delta - if 'content' in delta: - completion_response['content'] += delta['content'] + if delta.content is not None: + completion_response['content'] += delta.content completion_response['timings']['predicted_n'] += 1 completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop' else: assert len(chat_completion.choices) == 1 + assert chat_completion.usage is not None completion_response = { 'content': chat_completion.choices[0].message.content, 'timings': { @@ -1028,7 +1035,7 @@ async def oai_chat_completions(user_prompt, return completion_response -async def request_embedding(content, seed, base_url=None): +async def request_embedding(content, seed, base_url=None) -> list[list[float]]: async with aiohttp.ClientSession() as session: async with session.post(f'{base_url}/embedding', json={ @@ -1041,7 +1048,7 @@ async def request_embedding(content, seed, base_url=None): async def request_oai_embeddings(input, seed, base_url=None, user_api_key=None, - model=None, async_client=False): + model=None, async_client=False) -> list[list[float]]: # openai client always expects an api_key user_api_key = user_api_key if user_api_key is not None else 'nope' if async_client: @@ -1063,7 +1070,7 @@ async def request_oai_embeddings(input, seed, response_json = await response.json() assert response_json['model'] == model, f"invalid model received: {response_json['model']}" assert response_json['object'] == 'list' - if isinstance(input, collections.abc.Sequence): + if isinstance(input, Sequence): embeddings = [] for an_oai_embeddings in response_json['data']: embeddings.append(an_oai_embeddings['embedding']) @@ -1072,19 +1079,14 @@ async def request_oai_embeddings(input, seed, return embeddings else: openai.api_key = user_api_key - openai.api_base = f'{base_url}/v1' - oai_embeddings = openai.Embedding.create( + openai.base_url = f'{base_url}/v1/' + assert model is not None + oai_embeddings = openai.embeddings.create( model=model, input=input, ) - if isinstance(input, collections.abc.Sequence): - embeddings = [] - for an_oai_embeddings in oai_embeddings.data: - embeddings.append(an_oai_embeddings.embedding) - else: - embeddings = [oai_embeddings.data.embedding] - return embeddings + return [e.embedding for e in oai_embeddings.data] def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None): @@ -1122,7 +1124,7 @@ def assert_all_predictions_equal(completion_responses): if i == j: continue content_j = response_j['content'] - assert content_i == content_j, "contents not equal" + assert content_i == content_j, "contents not equal" def assert_all_predictions_different(completion_responses): @@ -1136,7 +1138,7 @@ def assert_all_predictions_different(completion_responses): if i == j: continue content_j = response_j['content'] - assert content_i != content_j, "contents not different" + assert content_i != content_j, "contents not different" def assert_all_token_probabilities_equal(completion_responses): @@ -1153,7 +1155,7 @@ def assert_all_token_probabilities_equal(completion_responses): if i == j: continue probs_j = response_j['completion_probabilities'][pos]['probs'] - assert probs_i == probs_j, "contents not equal" + assert probs_i == probs_j, "contents not equal" async def gather_tasks_results(context): @@ -1343,7 +1345,7 @@ def start_server_background(context): } context.server_process = subprocess.Popen( [str(arg) for arg in [context.server_path, *server_args]], - **pkwargs) + **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue] def server_log(in_stream, out_stream): for line in iter(in_stream.readline, b''): diff --git a/examples/server/tests/requirements.txt b/examples/server/tests/requirements.txt index 2e4f42ad2..2c741ea10 100644 --- a/examples/server/tests/requirements.txt +++ b/examples/server/tests/requirements.txt @@ -1,6 +1,6 @@ aiohttp~=3.9.3 behave~=1.2.6 huggingface_hub~=0.20.3 -numpy~=1.24.4 -openai~=0.25.0 +numpy~=1.26.4 +openai~=1.30.3 prometheus-client~=0.20.0 diff --git a/examples/server_embd.py b/examples/server_embd.py index a9a36a44c..0e34c6cea 100644 --- a/examples/server_embd.py +++ b/examples/server_embd.py @@ -1,13 +1,15 @@ import asyncio +import asyncio.threads import requests import numpy as np + n = 8 result = [] async def requests_post_async(*args, **kwargs): - return await asyncio.to_thread(requests.post, *args, **kwargs) + return await asyncio.threads.to_thread(requests.post, *args, **kwargs) async def main(): model_url = "http://127.0.0.1:6900" diff --git a/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py b/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py index ed93673bc..e045beb72 100644 --- a/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py +++ b/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py @@ -66,7 +66,7 @@ class Tensor: if len(self.ne) == 0: self.nbytes = 0 else: - self.nbytes = int(np.product(self.ne)) * 4 + self.nbytes = int(np.prod(self.ne)) * 4 else: raise ValueError(f"Unhandled data type '{self.dtype}'") diff --git a/ggml/ggml_vk_generate_shaders.py b/ggml/ggml_vk_generate_shaders.py index 38914eedb..41d5d9b8c 100644 --- a/ggml/ggml_vk_generate_shaders.py +++ b/ggml/ggml_vk_generate_shaders.py @@ -99,6 +99,8 @@ async def main(): tasks = [] + base_dict = {"FLOAT_TYPE": "float"} + for fp16 in (False, True): # MUL_MAT matmul_shaders(tasks, fp16, False) @@ -106,8 +108,6 @@ async def main(): matmul_shaders(tasks, fp16, True) for tname in type_names: - base_dict = {"FLOAT_TYPE": "float"} - # mul mat vec data_a_key = f"DATA_A_{tname.upper()}" shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp" diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index 20432bd25..e8e61abf8 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -67,7 +67,7 @@ class ReaderTensor(NamedTuple): class GGUFReader: # I - same as host, S - swapped - byte_order: Literal['I'] | Literal['S'] = 'I' + byte_order: Literal['I', 'S'] = 'I' alignment: int = GGUF_DEFAULT_ALIGNMENT data_offset: int @@ -86,7 +86,7 @@ class GGUFReader: GGUFValueType.BOOL: np.bool_, } - def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'): + def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'): self.data = np.memmap(path, mode = mode) offs = 0 @@ -140,7 +140,7 @@ class GGUFReader: return self.tensors[idx] def _get( - self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None, + self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None, ) -> npt.NDArray[Any]: count = int(count) itemsize = int(np.empty([], dtype = dtype).itemsize) diff --git a/gguf-py/gguf/lazy.py b/gguf-py/gguf/lazy.py index 1167335b8..c50124cd9 100644 --- a/gguf-py/gguf/lazy.py +++ b/gguf-py/gguf/lazy.py @@ -16,16 +16,16 @@ logger = logging.getLogger(__name__) class LazyMeta(ABCMeta): def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs): - def __getattr__(self, __name: str) -> Any: - meta_attr = getattr(self._meta, __name) + def __getattr__(self, name: str) -> Any: + meta_attr = getattr(self._meta, name) if callable(meta_attr): return type(self)._wrap_fn( - (lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)), + (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)), use_self=self, ) elif isinstance(meta_attr, self._tensor_type): # e.g. self.T with torch.Tensor should still be wrapped - return type(self)._wrap_fn(lambda s: getattr(s, __name))(self) + return type(self)._wrap_fn(lambda s: getattr(s, name))(self) else: # no need to wrap non-tensor properties, # and they likely don't depend on the actual contents of the tensor @@ -141,19 +141,21 @@ class LazyBase(ABC, metaclass=LazyMeta): res = cls.meta_with_dtype_and_shape(meta_noop, res.shape) if isinstance(res, cls._tensor_type): - def collect_replace(t: LazyBase): - if collect_replace.shared_lazy is None: - collect_replace.shared_lazy = t._lazy - else: - collect_replace.shared_lazy.extend(t._lazy) - t._lazy = collect_replace.shared_lazy + class CollectSharedLazy: + # emulating a static variable + shared_lazy: None | deque[LazyBase] = None - # emulating a static variable - collect_replace.shared_lazy = None + @staticmethod + def collect_replace(t: LazyBase): + if CollectSharedLazy.shared_lazy is None: + CollectSharedLazy.shared_lazy = t._lazy + else: + CollectSharedLazy.shared_lazy.extend(t._lazy) + t._lazy = CollectSharedLazy.shared_lazy - LazyBase._recurse_apply(args, collect_replace) + LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace) - shared_lazy = collect_replace.shared_lazy + shared_lazy = CollectSharedLazy.shared_lazy return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs)) else: @@ -184,6 +186,7 @@ class LazyBase(ABC, metaclass=LazyMeta): lt._args = cls._recurse_apply(lt._args, already_eager_to_eager) lt._data = lt._func(lt._args) # sanity check + assert lt._data is not None assert lt._data.dtype == lt._meta.dtype assert lt._data.shape == lt._meta.shape diff --git a/gguf-py/scripts/__init__.py b/gguf-py/scripts/__init__.py index f9d29cb69..e77f2e9c9 100644 --- a/gguf-py/scripts/__init__.py +++ b/gguf-py/scripts/__init__.py @@ -1,3 +1,5 @@ +# pyright: reportUnusedImport=false + from .gguf_convert_endian import main as gguf_convert_endian_entrypoint from .gguf_dump import main as gguf_dump_entrypoint from .gguf_set_metadata import main as gguf_set_metadata_entrypoint diff --git a/gguf-py/scripts/gguf_hash.py b/gguf-py/scripts/gguf_hash.py index 956775182..770b79a93 100755 --- a/gguf-py/scripts/gguf_hash.py +++ b/gguf-py/scripts/gguf_hash.py @@ -63,9 +63,9 @@ def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar) -> None: bar.update(sum_weights_in_tensor) sha1_layer = hashlib.sha1() - sha1_layer.update(tensor.data) - sha1.update(tensor.data) - uuidv5_sha1.update(tensor.data) + sha1_layer.update(tensor.data.data) + sha1.update(tensor.data.data) + uuidv5_sha1.update(tensor.data.data) print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100 # Flush Hash Progress Bar diff --git a/gguf-py/scripts/gguf_new_metadata.py b/gguf-py/scripts/gguf_new_metadata.py index c4b90d581..fce52a8c1 100755 --- a/gguf-py/scripts/gguf_new_metadata.py +++ b/gguf-py/scripts/gguf_new_metadata.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 +from __future__ import annotations + import logging import argparse import os diff --git a/gguf-py/tests/test_gguf.py b/gguf-py/tests/test_gguf.py index 0adeb7d55..76b52181e 100644 --- a/gguf-py/tests/test_gguf.py +++ b/gguf-py/tests/test_gguf.py @@ -1,4 +1,4 @@ -import gguf # noqa: F401 +import gguf # noqa: F401 # pyright: ignore[reportUnusedImport] # TODO: add tests diff --git a/pyrightconfig.json b/pyrightconfig.json index 020a71a4e..6016f4b6d 100644 --- a/pyrightconfig.json +++ b/pyrightconfig.json @@ -1,3 +1,21 @@ { "extraPaths": ["gguf-py"], -} + "pythonVersion": "3.9", + "pythonPlatform": "All", + "reportUnusedImport": "warning", + "reportDuplicateImport": "error", + "reportDeprecated": "warning", + "reportUnnecessaryTypeIgnoreComment": "warning", + "executionEnvironments": [ + { + // TODO: make this version override work correctly + "root": "gguf-py", + "pythonVersion": "3.8", + }, + { + // uses match expressions in steps.py + "root": "examples/server/tests", + "pythonVersion": "3.10", + }, + ], + } diff --git a/requirements/requirements-all.txt b/requirements/requirements-all.txt new file mode 100644 index 000000000..94de59d7e --- /dev/null +++ b/requirements/requirements-all.txt @@ -0,0 +1,12 @@ +-r ../examples/llava/requirements.txt +-r ../examples/server/bench/requirements.txt +-r ../examples/server/tests/requirements.txt + +-r ./requirements-compare-llama-bench.txt +-r ./requirements-pydantic.txt +-r ./requirements-test-tokenizer-random.txt + +-r ./requirements-convert_hf_to_gguf.txt +-r ./requirements-convert_hf_to_gguf_update.txt +-r ./requirements-convert_legacy_llama.txt +-r ./requirements-convert_llama_ggml_to_gguf.txt diff --git a/requirements/requirements-compare-llama-bench.txt b/requirements/requirements-compare-llama-bench.txt new file mode 100644 index 000000000..e0aaa3204 --- /dev/null +++ b/requirements/requirements-compare-llama-bench.txt @@ -0,0 +1,2 @@ +tabulate~=0.9.0 +GitPython~=3.1.43 diff --git a/requirements/requirements-pydantic.txt b/requirements/requirements-pydantic.txt new file mode 100644 index 000000000..2f9455b14 --- /dev/null +++ b/requirements/requirements-pydantic.txt @@ -0,0 +1,2 @@ +docstring_parser~=0.15 +pydantic~=2.6.3 diff --git a/requirements/requirements-test-tokenizer-random.txt b/requirements/requirements-test-tokenizer-random.txt new file mode 100644 index 000000000..2785e71a2 --- /dev/null +++ b/requirements/requirements-test-tokenizer-random.txt @@ -0,0 +1 @@ +cffi~=1.16.0 diff --git a/scripts/check-requirements.sh b/scripts/check-requirements.sh index 48f924c02..d3bbded13 100755 --- a/scripts/check-requirements.sh +++ b/scripts/check-requirements.sh @@ -108,6 +108,11 @@ check_convert_script() { fatal "$py missing requirements. Expected: $reqs" fi + # Check that all sub-requirements are added to top-level requirements.txt + if ! grep -qF "$reqs" requirements.txt; then + fatal "$reqs needs to be added to requirements.txt" + fi + local venv="$workdir/$pyname-venv" python3 -m venv "$venv" @@ -134,12 +139,7 @@ EOF readonly ignore_eq_eq='check_requirements: ignore "=="' -for req in "$reqs_dir"/*; do - # Check that all sub-requirements are added to top-level requirements.txt - if ! grep -qF "$req" requirements.txt; then - fatal "$req needs to be added to requirements.txt" - fi - +for req in */**/requirements*.txt; do # Make sure exact release versions aren't being pinned in the requirements # Filters out the ignore string if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 513dde5e1..92b9e682a 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -123,13 +123,13 @@ builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall() try: repo = git.Repo(".", search_parent_directories=True) -except git.exc.InvalidGitRepositoryError: +except git.InvalidGitRepositoryError: repo = None -def find_parent_in_data(commit): +def find_parent_in_data(commit: git.Commit): """Helper function to find the most recent parent measured in number of commits for which there is data.""" - heap = [(0, commit)] + heap: list[tuple[int, git.Commit]] = [(0, commit)] seen_hexsha8 = set() while heap: depth, current_commit = heapq.heappop(heap) @@ -144,7 +144,7 @@ def find_parent_in_data(commit): return None -def get_all_parent_hexsha8s(commit): +def get_all_parent_hexsha8s(commit: git.Commit): """Helper function to recursively get hexsha8 values for all parents of a commit.""" unvisited = [commit] visited = [] diff --git a/scripts/gen-unicode-data.py b/scripts/gen-unicode-data.py index 890e4d7c2..2d9bde01c 100644 --- a/scripts/gen-unicode-data.py +++ b/scripts/gen-unicode-data.py @@ -1,3 +1,5 @@ +from __future__ import annotations + import array import unicodedata import requests @@ -133,7 +135,7 @@ table_nfd.sort() # group ranges with same flags -ranges_flags = [(0, codepoint_flags[0])] # start, flags +ranges_flags: list[tuple[int, int]] = [(0, codepoint_flags[0])] # start, flags for codepoint, flags in enumerate(codepoint_flags): if flags != ranges_flags[-1][1]: ranges_flags.append((codepoint, flags)) @@ -141,11 +143,11 @@ ranges_flags.append((MAX_CODEPOINTS, 0x0000)) # group ranges with same nfd -ranges_nfd = [(0, 0, 0)] # start, last, nfd +ranges_nfd: list[tuple[int, int, int]] = [(0, 0, 0)] # start, last, nfd for codepoint, norm in table_nfd: start = ranges_nfd[-1][0] if ranges_nfd[-1] != (start, codepoint - 1, norm): - ranges_nfd.append(None) + ranges_nfd.append(None) # type: ignore[arg-type] # dummy, will be replaced below start = codepoint ranges_nfd[-1] = (start, codepoint, norm) @@ -179,13 +181,13 @@ for codepoint in table_whitespace: out("};\n") out("const std::unordered_map unicode_map_lowercase = {") -for tuple in table_lowercase: - out("{0x%06X, 0x%06X}," % tuple) +for tuple_lw in table_lowercase: + out("{0x%06X, 0x%06X}," % tuple_lw) out("};\n") out("const std::unordered_map unicode_map_uppercase = {") -for tuple in table_uppercase: - out("{0x%06X, 0x%06X}," % tuple) +for tuple_up in table_uppercase: + out("{0x%06X, 0x%06X}," % tuple_up) out("};\n") out("const std::vector unicode_ranges_nfd = { // start, last, nfd") diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index 48cab8a1e..c50a8ca32 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -6,6 +6,8 @@ # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe # +from __future__ import annotations + import time import logging import argparse @@ -13,7 +15,9 @@ import subprocess import random import unicodedata -from typing import Iterator +from pathlib import Path +from typing import Any, Iterator, cast +from typing_extensions import Buffer import cffi from transformers import AutoTokenizer @@ -28,15 +32,15 @@ class LibLlama: DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON - def __init__(self, path_llama_h: str = None, path_includes: list[str] = [], path_libllama: str = None): + def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None): path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H path_includes = path_includes or self.DEFAULT_PATH_INCLUDES path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) self.lib.llama_backend_init() - def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str): - cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] + def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]: + cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] cmd += ["-I" + path for path in path_includes] + [path_llama_h] res = subprocess.run(cmd, stdout=subprocess.PIPE) assert (res.returncode == 0) @@ -68,7 +72,7 @@ class LibLlama: class LibLlamaModel: def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): - self.lib = libllama.lib + self.lib: Any = libllama.lib self.ffi = libllama.ffi if isinstance(mparams, dict): mparams = libllama.model_default_params(**mparams) @@ -94,11 +98,11 @@ class LibLlamaModel: self.lib = None def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: - text = text.encode("utf-8") - num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special) + encoded_text: bytes = text.encode("utf-8") + num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) while num < 0 and len(self.token_ids) < (16 << 20): self.token_ids = self.ffi.new("llama_token[]", -2 * num) - num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special) + num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) return list(self.token_ids[0:num]) def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: @@ -110,7 +114,7 @@ class LibLlamaModel: while num < 0 and len(self.text_buff) < (16 << 20): self.text_buff = self.ffi.new("uint8_t[]", -2 * num) num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) - return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' + return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' class Tokenizer: @@ -152,7 +156,7 @@ class TokenizerGroundtruth (Tokenizer): class TokenizerLlamaCpp (Tokenizer): - libllama: LibLlama = None + libllama: LibLlama | None = None def __init__(self, vocab_file: str): if not self.libllama: @@ -404,7 +408,7 @@ def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100 def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): - def find_first_mismatch(ids1: list[int], ids2: list[int]): + def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str): for i, (a, b) in enumerate(zip(ids1, ids2)): if a != b: return i @@ -433,7 +437,7 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl decode_errors = 0 MAX_ERRORS = 10 - logger.info("%s: %s" % (generator.__name__, "ini")) + logger.info("%s: %s" % (generator.__qualname__, "ini")) for text in generator: # print(repr(text), text.encode()) # print(repr(text), hex(ord(text[0])), text.encode()) @@ -472,13 +476,13 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl break t_total = time.perf_counter() - t_start - logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") + logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") -def main(argv: list[str] = None): +def main(argv: list[str] | None = None): parser = argparse.ArgumentParser() - parser.add_argument("vocab_file", help="path to vocab 'gguf' file") - parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") + parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file") + parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(argv) @@ -520,7 +524,7 @@ if __name__ == "__main__": format = "%(levelname)s %(message)s", ) - path_tokenizers = "./models/tokenizers/" + path_tokenizers = Path("./models/tokenizers/") path_vocab_format = "./models/ggml-vocab-%s.gguf" tokenizers = [ @@ -556,6 +560,6 @@ if __name__ == "__main__": for tokenizer in tokenizers: logger.info("-" * 50) logger.info(f"TOKENIZER: '{tokenizer}'") - vocab_file = path_vocab_format % tokenizer - dir_tokenizer = path_tokenizers + "/" + tokenizer - main([vocab_file, dir_tokenizer, "--verbose"]) + vocab_file = Path(path_vocab_format % tokenizer) + dir_tokenizer = path_tokenizers / tokenizer + main([str(vocab_file), str(dir_tokenizer), "--verbose"])