mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
ROCm Port (#1087)
* use hipblas based on cublas * Update Makefile for the Cuda kernels * Expand arch list and make it overrideable * Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5) * add hipBLAS to README * new build arg LLAMA_CUDA_MMQ_Y * fix half2 decomposition * Add intrinsics polyfills for AMD * AMD assembly optimized __dp4a * Allow overriding CC_TURING * use "ROCm" instead of "CUDA" * ignore all build dirs * Add Dockerfiles * fix llama-bench * fix -nommq help for non CUDA/HIP --------- Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com> Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com> Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Co-authored-by: jammm <2500920+jammm@users.noreply.github.com> Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
This commit is contained in:
parent
3f460a2b72
commit
6bbc598a63
44
.devops/full-rocm.Dockerfile
Normal file
44
.devops/full-rocm.Dockerfile
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG ROCM_VERSION=5.6
|
||||||
|
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||||
|
|
||||||
|
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||||
|
|
||||||
|
# Unless otherwise specified, we make a fat build.
|
||||||
|
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||||
|
# This is mostly tied to rocBLAS supported archs.
|
||||||
|
ARG ROCM_DOCKER_ARCH=\
|
||||||
|
gfx803 \
|
||||||
|
gfx900 \
|
||||||
|
gfx906 \
|
||||||
|
gfx908 \
|
||||||
|
gfx90a \
|
||||||
|
gfx1010 \
|
||||||
|
gfx1030 \
|
||||||
|
gfx1100 \
|
||||||
|
gfx1101 \
|
||||||
|
gfx1102
|
||||||
|
|
||||||
|
COPY requirements.txt requirements.txt
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Set nvcc architecture
|
||||||
|
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||||
|
# Enable ROCm
|
||||||
|
ENV LLAMA_HIPBLAS=1
|
||||||
|
ENV CC=/opt/rocm/llvm/bin/clang
|
||||||
|
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||||
|
|
||||||
|
RUN make
|
||||||
|
|
||||||
|
ENTRYPOINT ["/app/.devops/tools.sh"]
|
44
.devops/main-rocm.Dockerfile
Normal file
44
.devops/main-rocm.Dockerfile
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
ARG UBUNTU_VERSION=22.04
|
||||||
|
|
||||||
|
# This needs to generally match the container host's environment.
|
||||||
|
ARG ROCM_VERSION=5.6
|
||||||
|
|
||||||
|
# Target the CUDA build image
|
||||||
|
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||||
|
|
||||||
|
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||||
|
|
||||||
|
# Unless otherwise specified, we make a fat build.
|
||||||
|
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||||
|
# This is mostly tied to rocBLAS supported archs.
|
||||||
|
ARG ROCM_DOCKER_ARCH=\
|
||||||
|
gfx803 \
|
||||||
|
gfx900 \
|
||||||
|
gfx906 \
|
||||||
|
gfx908 \
|
||||||
|
gfx90a \
|
||||||
|
gfx1010 \
|
||||||
|
gfx1030 \
|
||||||
|
gfx1100 \
|
||||||
|
gfx1101 \
|
||||||
|
gfx1102
|
||||||
|
|
||||||
|
COPY requirements.txt requirements.txt
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip setuptools wheel \
|
||||||
|
&& pip install -r requirements.txt
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Set nvcc architecture
|
||||||
|
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||||
|
# Enable ROCm
|
||||||
|
ENV LLAMA_HIPBLAS=1
|
||||||
|
ENV CC=/opt/rocm/llvm/bin/clang
|
||||||
|
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||||
|
|
||||||
|
RUN make
|
||||||
|
|
||||||
|
ENTRYPOINT [ "/app/main" ]
|
@ -5,14 +5,7 @@
|
|||||||
.vscode/
|
.vscode/
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
|
||||||
build/
|
build*/
|
||||||
build-em/
|
|
||||||
build-debug/
|
|
||||||
build-release/
|
|
||||||
build-static/
|
|
||||||
build-no-accel/
|
|
||||||
build-sanitize-addr/
|
|
||||||
build-sanitize-thread/
|
|
||||||
|
|
||||||
models/*
|
models/*
|
||||||
|
|
||||||
|
15
.gitignore
vendored
15
.gitignore
vendored
@ -16,20 +16,7 @@
|
|||||||
.vs/
|
.vs/
|
||||||
.vscode/
|
.vscode/
|
||||||
|
|
||||||
build/
|
build*/
|
||||||
build-em/
|
|
||||||
build-debug/
|
|
||||||
build-release/
|
|
||||||
build-ci-debug/
|
|
||||||
build-ci-release/
|
|
||||||
build-static/
|
|
||||||
build-cublas/
|
|
||||||
build-opencl/
|
|
||||||
build-metal/
|
|
||||||
build-mpi/
|
|
||||||
build-no-accel/
|
|
||||||
build-sanitize-addr/
|
|
||||||
build-sanitize-thread/
|
|
||||||
out/
|
out/
|
||||||
tmp/
|
tmp/
|
||||||
|
|
||||||
|
@ -74,6 +74,7 @@ set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kern
|
|||||||
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
||||||
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
|
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
|
||||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||||
|
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||||
option(LLAMA_METAL "llama: use Metal" OFF)
|
option(LLAMA_METAL "llama: use Metal" OFF)
|
||||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||||
@ -352,6 +353,43 @@ if (LLAMA_CLBLAST)
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (LLAMA_HIPBLAS)
|
||||||
|
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
||||||
|
|
||||||
|
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||||
|
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||||
|
endif()
|
||||||
|
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||||
|
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
find_package(hip)
|
||||||
|
find_package(hipblas)
|
||||||
|
find_package(rocblas)
|
||||||
|
|
||||||
|
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||||
|
message(STATUS "HIP and hipBLAS found")
|
||||||
|
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||||
|
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||||
|
if (LLAMA_CUDA_FORCE_DMMV)
|
||||||
|
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
|
||||||
|
endif()
|
||||||
|
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||||
|
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||||
|
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||||
|
target_compile_definitions(ggml-rocm PRIVATE CC_TURING=1000000000)
|
||||||
|
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||||
|
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||||
|
|
||||||
|
if (LLAMA_STATIC)
|
||||||
|
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||||
|
endif()
|
||||||
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-rocm)
|
||||||
|
else()
|
||||||
|
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_ALL_WARNINGS)
|
if (LLAMA_ALL_WARNINGS)
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
set(c_flags
|
set(c_flags
|
||||||
|
24
Makefile
24
Makefile
@ -280,6 +280,30 @@ ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
|||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
endif # LLAMA_CLBLAST
|
endif # LLAMA_CLBLAST
|
||||||
|
|
||||||
|
ifdef LLAMA_HIPBLAS
|
||||||
|
ROCM_PATH ?= /opt/rocm
|
||||||
|
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||||
|
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||||
|
LLAMA_CUDA_DMMV_X ?= 32
|
||||||
|
LLAMA_CUDA_MMV_Y ?= 1
|
||||||
|
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||||
|
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||||
|
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||||
|
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||||
|
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||||
|
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||||
|
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||||
|
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||||
|
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||||
|
HIPFLAGS += -DCC_TURING=1000000000
|
||||||
|
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||||
|
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||||
|
endif # LLAMA_CUDA_FORCE_DMMV
|
||||||
|
OBJS += ggml-cuda.o
|
||||||
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||||
|
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||||
|
endif # LLAMA_HIPBLAS
|
||||||
|
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||||
CXXFLAGS += -DGGML_USE_METAL
|
CXXFLAGS += -DGGML_USE_METAL
|
||||||
|
29
README.md
29
README.md
@ -422,6 +422,35 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
|
|
||||||
|
- #### hipBLAS
|
||||||
|
|
||||||
|
This provide BLAS acceleation on HIP supported GPU like AMD GPU.
|
||||||
|
Make sure to have ROCm installed.
|
||||||
|
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
||||||
|
Windows support is coming soon...
|
||||||
|
|
||||||
|
- Using `make`:
|
||||||
|
```bash
|
||||||
|
make LLAMA_HIPBLAS=1
|
||||||
|
```
|
||||||
|
- Using `CMake`:
|
||||||
|
```bash
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
|
||||||
|
cmake --build .
|
||||||
|
```
|
||||||
|
|
||||||
|
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||||
|
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
|
||||||
|
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||||
|
|
||||||
|
| Option | Legal values | Default | Description |
|
||||||
|
|-------------------------|------------------------|---------|-------------|
|
||||||
|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||||
|
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||||
|
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||||
|
|
||||||
- #### CLBlast
|
- #### CLBlast
|
||||||
|
|
||||||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||||||
|
@ -613,9 +613,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||||
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||||
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
||||||
|
#ifdef GGML_USE_CUBLAS
|
||||||
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
|
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
|
||||||
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
fprintf(stdout, " use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
||||||
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
|
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
|
||||||
|
#endif // GGML_USE_CUBLAS
|
||||||
#endif
|
#endif
|
||||||
fprintf(stdout, " --mtest compute maximum memory usage\n");
|
fprintf(stdout, " --mtest compute maximum memory usage\n");
|
||||||
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
|
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
|
||||||
|
@ -18,9 +18,7 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
#ifdef GGML_USE_CUBLAS
|
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#endif
|
|
||||||
|
|
||||||
// utils
|
// utils
|
||||||
static uint64_t get_time_ns() {
|
static uint64_t get_time_ns() {
|
||||||
@ -504,7 +502,7 @@ struct test {
|
|||||||
|
|
||||||
static std::string get_backend() {
|
static std::string get_backend() {
|
||||||
if (cuda) {
|
if (cuda) {
|
||||||
return "CUDA";
|
return GGML_CUDA_NAME;
|
||||||
}
|
}
|
||||||
if (opencl) {
|
if (opencl) {
|
||||||
return "OpenCL";
|
return "OpenCL";
|
||||||
|
173
ggml-cuda.cu
173
ggml-cuda.cu
@ -6,15 +6,116 @@
|
|||||||
#include <atomic>
|
#include <atomic>
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#include <hip/hip_runtime.h>
|
||||||
|
#include <hipblas/hipblas.h>
|
||||||
|
#include <hip/hip_fp16.h>
|
||||||
|
#ifdef __HIP_PLATFORM_AMD__
|
||||||
|
// for rocblas_initialize()
|
||||||
|
#include "rocblas/rocblas.h"
|
||||||
|
#endif
|
||||||
|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
||||||
|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||||
|
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||||
|
#define CUBLAS_OP_T HIPBLAS_OP_T
|
||||||
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
||||||
|
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||||
|
#define CUDA_R_16F HIPBLAS_R_16F
|
||||||
|
#define CUDA_R_32F HIPBLAS_R_32F
|
||||||
|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||||
|
#define cublasCreate hipblasCreate
|
||||||
|
#define cublasGemmEx hipblasGemmEx
|
||||||
|
#define cublasHandle_t hipblasHandle_t
|
||||||
|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
|
||||||
|
#define cublasSetStream hipblasSetStream
|
||||||
|
#define cublasSgemm hipblasSgemm
|
||||||
|
#define cublasStatus_t hipblasStatus_t
|
||||||
|
#define cudaDeviceProp hipDeviceProp_t
|
||||||
|
#define cudaDeviceSynchronize hipDeviceSynchronize
|
||||||
|
#define cudaError_t hipError_t
|
||||||
|
#define cudaEventCreateWithFlags hipEventCreateWithFlags
|
||||||
|
#define cudaEventDisableTiming hipEventDisableTiming
|
||||||
|
#define cudaEventRecord hipEventRecord
|
||||||
|
#define cudaEvent_t hipEvent_t
|
||||||
|
#define cudaEventDestroy hipEventDestroy
|
||||||
|
#define cudaFree hipFree
|
||||||
|
#define cudaFreeHost hipHostFree
|
||||||
|
#define cudaGetDevice hipGetDevice
|
||||||
|
#define cudaGetDeviceCount hipGetDeviceCount
|
||||||
|
#define cudaGetDeviceProperties hipGetDeviceProperties
|
||||||
|
#define cudaGetErrorString hipGetErrorString
|
||||||
|
#define cudaGetLastError hipGetLastError
|
||||||
|
#define cudaMalloc hipMalloc
|
||||||
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||||
|
#define cudaMemcpy hipMemcpy
|
||||||
|
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
||||||
|
#define cudaMemcpyAsync hipMemcpyAsync
|
||||||
|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
|
||||||
|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||||
|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
||||||
|
#define cudaMemcpyKind hipMemcpyKind
|
||||||
|
#define cudaMemset hipMemset
|
||||||
|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||||
|
#define cudaSetDevice hipSetDevice
|
||||||
|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||||
|
#define cudaStreamNonBlocking hipStreamNonBlocking
|
||||||
|
#define cudaStreamSynchronize hipStreamSynchronize
|
||||||
|
#define cudaStreamWaitEvent(stream, event) hipStreamWaitEvent(stream, event, 0)
|
||||||
|
#define cudaStream_t hipStream_t
|
||||||
|
#define cudaSuccess hipSuccess
|
||||||
|
#else
|
||||||
#include <cuda_runtime.h>
|
#include <cuda_runtime.h>
|
||||||
#include <cublas_v2.h>
|
#include <cublas_v2.h>
|
||||||
#include <cuda_fp16.h>
|
#include <cuda_fp16.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
|
||||||
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||||
|
#ifndef CC_TURING
|
||||||
#define CC_TURING 700
|
#define CC_TURING 700
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS)
|
||||||
|
#define __CUDA_ARCH__ 1300
|
||||||
|
|
||||||
|
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||||
|
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||||
|
return reinterpret_cast<const int&>(c);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||||
|
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||||
|
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||||
|
#elif defined(__gfx1100__)
|
||||||
|
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
||||||
|
#elif defined(__gfx1010__) || defined(__gfx900__)
|
||||||
|
int tmp1;
|
||||||
|
int tmp2;
|
||||||
|
asm("\n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
||||||
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
||||||
|
v_add3_u32 %0, %1, %2, %0 \n \
|
||||||
|
"
|
||||||
|
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
||||||
|
: "v"(a), "v"(b)
|
||||||
|
);
|
||||||
|
#else
|
||||||
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||||
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||||
|
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
||||||
|
#endif
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
#if defined(_MSC_VER)
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
@ -424,8 +525,8 @@ static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const in
|
|||||||
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||||
|
|
||||||
const dfloat d = x[ib].dm.x;
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
const dfloat m = x[ib].dm.y;
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
const int vui = x[ib].qs[iqs];
|
const int vui = x[ib].qs[iqs];
|
||||||
|
|
||||||
@ -467,8 +568,8 @@ static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const in
|
|||||||
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
|
||||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||||
|
|
||||||
const dfloat d = x[ib].dm.x;
|
const dfloat d = __low2half(x[ib].dm);
|
||||||
const dfloat m = x[ib].dm.y;
|
const dfloat m = __high2half(x[ib].dm);
|
||||||
|
|
||||||
uint32_t qh;
|
uint32_t qh;
|
||||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||||
@ -520,8 +621,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
|
|||||||
const uint8_t q = x[i].qs[32*n + l];
|
const uint8_t q = x[i].qs[32*n + l];
|
||||||
float * y = yy + i*QK_K + 128*n;
|
float * y = yy + i*QK_K + 128*n;
|
||||||
|
|
||||||
float dall = x[i].dm.x;
|
float dall = __low2half(x[i].dm);
|
||||||
float dmin = x[i].dm.y;
|
float dmin = __high2half(x[i].dm);
|
||||||
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||||
@ -531,8 +632,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
|
|||||||
const int il = tid%16; // 0...15
|
const int il = tid%16; // 0...15
|
||||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
const uint8_t q = x[i].qs[il] >> (2*is);
|
||||||
float * y = yy + i*QK_K + 16*is + il;
|
float * y = yy + i*QK_K + 16*is + il;
|
||||||
float dall = x[i].dm.x;
|
float dall = __low2half(x[i].dm);
|
||||||
float dmin = x[i].dm.y;
|
float dmin = __high2half(x[i].dm);
|
||||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
||||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
#endif
|
#endif
|
||||||
@ -618,8 +719,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
|
|||||||
|
|
||||||
float * y = yy + i*QK_K + 64*il + n*ir;
|
float * y = yy + i*QK_K + 64*il + n*ir;
|
||||||
|
|
||||||
const float dall = x[i].dm.x;
|
const float dall = __low2half(x[i].dm);
|
||||||
const float dmin = x[i].dm.y;
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
||||||
|
|
||||||
@ -657,8 +758,8 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float
|
|||||||
|
|
||||||
float * y = yy + i*QK_K + 64*il + 2*ir;
|
float * y = yy + i*QK_K + 64*il + 2*ir;
|
||||||
|
|
||||||
const float dall = x[i].dm.x;
|
const float dall = __low2half(x[i].dm);
|
||||||
const float dmin = x[i].dm.y;
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
||||||
const uint8_t * qh = x[i].qh + 2*ir;
|
const uint8_t * qh = x[i].qh + 2*ir;
|
||||||
@ -770,8 +871,8 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||||||
const float * y = yy + i * QK_K + y_offset;
|
const float * y = yy + i * QK_K + y_offset;
|
||||||
const uint8_t * q = x[i].qs + q_offset;
|
const uint8_t * q = x[i].qs + q_offset;
|
||||||
|
|
||||||
const float dall = x[i].dm.x;
|
const float dall = __low2half(x[i].dm);
|
||||||
const float dmin = x[i].dm.y;
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
||||||
aux[0] = a[0] & 0x0f0f0f0f;
|
aux[0] = a[0] & 0x0f0f0f0f;
|
||||||
@ -991,8 +1092,8 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||||||
const float * y1 = yy + i*QK_K + y_offset;
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
const float * y2 = y1 + 128;
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
const float dall = x[i].dm.x;
|
const float dall = __low2half(x[i].dm);
|
||||||
const float dmin = x[i].dm.y;
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
aux[0] = a[im+0] & kmask1;
|
aux[0] = a[im+0] & kmask1;
|
||||||
@ -1124,8 +1225,8 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||||||
const float * y1 = yy + i*QK_K + y_offset;
|
const float * y1 = yy + i*QK_K + y_offset;
|
||||||
const float * y2 = y1 + 128;
|
const float * y2 = y1 + 128;
|
||||||
|
|
||||||
const float dall = x[i].dm.x;
|
const float dall = __low2half(x[i].dm);
|
||||||
const float dmin = x[i].dm.y;
|
const float dmin = __high2half(x[i].dm);
|
||||||
|
|
||||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||||
aux[0] = a[im+0] & kmask1;
|
aux[0] = a[im+0] & kmask1;
|
||||||
@ -1348,8 +1449,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
y[ib].ds.x = d;
|
reinterpret_cast<half&>(y[ib].ds.x) = d;
|
||||||
y[ib].ds.y = sum;
|
reinterpret_cast<half&>(y[ib].ds.y) = sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
||||||
@ -2346,7 +2447,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
|||||||
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||||
@ -2432,7 +2533,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
|||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i = 0; i < QR2_K; ++ i) {
|
for (int i = 0; i < QR2_K; ++ i) {
|
||||||
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
||||||
d8[i] = bq8_1[bq8_offset + i].ds.x;
|
d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
||||||
@ -2551,7 +2652,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i = 0; i < QR3_K; ++i) {
|
for (int i = 0; i < QR3_K; ++i) {
|
||||||
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
||||||
d8[i] = bq8_1[bq8_offset + i].ds.x;
|
d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
||||||
@ -2720,7 +2821,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|||||||
|
|
||||||
for (int i = 0; i < QR4_K; ++i) {
|
for (int i = 0; i < QR4_K; ++i) {
|
||||||
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||||||
d8[i] = bq8i->ds.x;
|
d8[i] = __low2half(bq8i->ds);
|
||||||
|
|
||||||
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
||||||
u[2*i+0] = q8[0];
|
u[2*i+0] = q8[0];
|
||||||
@ -2747,8 +2848,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|||||||
const float dall = bq4_K->d[0];
|
const float dall = bq4_K->d[0];
|
||||||
const float dmin = bq4_K->d[1];
|
const float dmin = bq4_K->d[1];
|
||||||
|
|
||||||
const float d8_1 = bq8_1[0].ds.x;
|
const float d8_1 = __low2float(bq8_1[0].ds);
|
||||||
const float d8_2 = bq8_1[1].ds.x;
|
const float d8_2 = __low2float(bq8_1[1].ds);
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||||||
@ -2901,7 +3002,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i = 0; i < QR5_K; ++i) {
|
for (int i = 0; i < QR5_K; ++i) {
|
||||||
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||||||
d8[i] = bq8i->ds.x;
|
d8[i] = __low2float(bq8i->ds);
|
||||||
|
|
||||||
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
||||||
u[2*i+0] = q8[0];
|
u[2*i+0] = q8[0];
|
||||||
@ -2919,8 +3020,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|||||||
|
|
||||||
const float d = bq5_K->d;
|
const float d = bq5_K->d;
|
||||||
|
|
||||||
const float d8_1 = bq8_1[0].ds.x;
|
const float d8_1 = __low2half(bq8_1[0].ds);
|
||||||
const float d8_2 = bq8_1[1].ds.x;
|
const float d8_2 = __low2half(bq8_1[1].ds);
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||||||
@ -3075,7 +3176,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i = 0; i < QR6_K; ++i) {
|
for (int i = 0; i < QR6_K; ++i) {
|
||||||
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
||||||
d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
|
d8[i] = __low2half(bq8_1[bq8_offset + 2*i].ds);
|
||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
||||||
@ -3243,7 +3344,7 @@ static __device__ __forceinline__ void mul_mat_q(
|
|||||||
*dsi_dst = *dsi_src;
|
*dsi_dst = *dsi_src;
|
||||||
} else {
|
} else {
|
||||||
float * dfi_dst = (float *) dsi_dst;
|
float * dfi_dst = (float *) dsi_dst;
|
||||||
*dfi_dst = (*dsi_src).x;
|
*dfi_dst = __low2half(*dsi_src);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4944,10 +5045,18 @@ void ggml_init_cublas() {
|
|||||||
static bool initialized = false;
|
static bool initialized = false;
|
||||||
|
|
||||||
if (!initialized) {
|
if (!initialized) {
|
||||||
|
|
||||||
|
#ifdef __HIP_PLATFORM_AMD__
|
||||||
|
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||||
|
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
||||||
|
rocblas_initialize();
|
||||||
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
|
#endif
|
||||||
|
|
||||||
CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
|
CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
|
||||||
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
|
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
|
||||||
int64_t total_vram = 0;
|
int64_t total_vram = 0;
|
||||||
fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
|
fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
|
||||||
for (int id = 0; id < g_device_count; ++id) {
|
for (int id = 0; id < g_device_count; ++id) {
|
||||||
cudaDeviceProp prop;
|
cudaDeviceProp prop;
|
||||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
||||||
|
@ -2,6 +2,14 @@
|
|||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#ifdef GGML_USE_HIPBLAS
|
||||||
|
#define GGML_CUDA_NAME "ROCm"
|
||||||
|
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||||
|
#else
|
||||||
|
#define GGML_CUDA_NAME "CUDA"
|
||||||
|
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
@ -1836,7 +1836,7 @@ static void llm_load_tensors(
|
|||||||
(void) main_gpu;
|
(void) main_gpu;
|
||||||
(void) mul_mat_q;
|
(void) mul_mat_q;
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__);
|
LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
|
||||||
ggml_cuda_set_main_device(main_gpu);
|
ggml_cuda_set_main_device(main_gpu);
|
||||||
ggml_cuda_set_mul_mat_q(mul_mat_q);
|
ggml_cuda_set_mul_mat_q(mul_mat_q);
|
||||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
||||||
|
Loading…
Reference in New Issue
Block a user