mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 19:04:35 +00:00
server : (refactoring) do not rely on JSON internally (#10643)
* server : (refactoring) reduce usage of json internally * move all response types to struct * wip [no ci] * many fixes * add virtual function * fix index * minor style fix * add std::move * refactor handle_completions_generic * add virtual functions * remove server.hpp * clarify server_sent_event RFC specs * apply review comments * fix model_alias and completion_probabilities * small clean up * remove virtual for to_json_oai_compat() * naming oai_compat --> oaicompat * fix unwanted recursive call * update docs
This commit is contained in:
parent
7736837d62
commit
6c5bc0625f
@ -215,7 +215,7 @@ struct common_params {
|
||||
struct common_params_speculative speculative;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
|
@ -473,9 +473,11 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).
|
||||
- `model`: The path to the model loaded with `-m`
|
||||
- `prompt`: The provided `prompt`
|
||||
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
||||
- `stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
|
||||
- `stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
|
||||
- `stop_type`: Indicating whether the completion has stopped. Possible values are:
|
||||
- `none`: Generating (not stopped)
|
||||
- `eos`: Stopped because it encountered the EOS token
|
||||
- `limit`: Stopped because `n_predict` tokens were generated before stop words or EOS was encountered
|
||||
- `word`: Stopped due to encountering a stopping word from `stop` JSON array provided
|
||||
- `stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
|
||||
- `timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
|
||||
- `tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -44,4 +44,10 @@ To run with stdout/stderr display in real time (verbose output, but useful for d
|
||||
DEBUG=1 ./tests.sh -s -v -x
|
||||
```
|
||||
|
||||
Hint: You can compile and run test in single command, useful for local developement:
|
||||
|
||||
```shell
|
||||
cmake --build build -j --target llama-server && ./examples/server/tests/tests.sh
|
||||
```
|
||||
|
||||
To see all available arguments, please refer to [pytest documentation](https://docs.pytest.org/en/stable/how-to/usage.html)
|
||||
|
@ -1,5 +1,9 @@
|
||||
#!/bin/bash
|
||||
|
||||
# make sure we are in the right directory
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
cd $SCRIPT_DIR
|
||||
|
||||
set -eu
|
||||
|
||||
if [ $# -lt 1 ]
|
||||
|
@ -12,13 +12,13 @@ def create_server():
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
|
||||
[
|
||||
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
|
||||
]
|
||||
)
|
||||
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
|
||||
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
@ -30,29 +30,27 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body["model"] == model if model is not None else server.model_alias
|
||||
assert res.body["usage"]["prompt_tokens"] == n_prompt
|
||||
assert res.body["usage"]["completion_tokens"] == n_predicted
|
||||
choice = res.body["choices"][0]
|
||||
assert "assistant" == choice["message"]["role"]
|
||||
assert match_regex(re_content, choice["message"]["content"])
|
||||
if truncated:
|
||||
assert choice["finish_reason"] == "length"
|
||||
else:
|
||||
assert choice["finish_reason"] == "stop"
|
||||
assert choice["finish_reason"] == finish_reason
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
|
||||
"system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
|
||||
[
|
||||
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
|
||||
("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
|
||||
("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
|
||||
]
|
||||
)
|
||||
def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
|
||||
def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
|
||||
global server
|
||||
server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
|
||||
server.start()
|
||||
res = server.make_stream_request("POST", "/chat/completions", data={
|
||||
"model": model,
|
||||
"max_tokens": max_tokens,
|
||||
"messages": [
|
||||
{"role": "system", "content": system_prompt},
|
||||
@ -63,16 +61,13 @@ def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, r
|
||||
content = ""
|
||||
for data in res:
|
||||
choice = data["choices"][0]
|
||||
assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
|
||||
if choice["finish_reason"] in ["stop", "length"]:
|
||||
assert data["usage"]["prompt_tokens"] == n_prompt
|
||||
assert data["usage"]["completion_tokens"] == n_predicted
|
||||
assert "content" not in choice["delta"]
|
||||
assert match_regex(re_content, content)
|
||||
# FIXME: not sure why this is incorrect in stream mode
|
||||
# if truncated:
|
||||
# assert choice["finish_reason"] == "length"
|
||||
# else:
|
||||
# assert choice["finish_reason"] == "stop"
|
||||
assert choice["finish_reason"] == finish_reason
|
||||
else:
|
||||
assert choice["finish_reason"] is None
|
||||
content += choice["delta"]["content"]
|
||||
@ -93,7 +88,7 @@ def test_chat_completion_with_openai_library():
|
||||
temperature=0.8,
|
||||
)
|
||||
print(res)
|
||||
assert res.choices[0].finish_reason == "stop"
|
||||
assert res.choices[0].finish_reason == "length"
|
||||
assert res.choices[0].message.content is not None
|
||||
assert match_regex("(Suddenly)+", res.choices[0].message.content)
|
||||
|
||||
|
@ -51,6 +51,24 @@ def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_promp
|
||||
content += data["content"]
|
||||
|
||||
|
||||
def test_completion_stream_vs_non_stream():
|
||||
global server
|
||||
server.start()
|
||||
res_stream = server.make_stream_request("POST", "/completion", data={
|
||||
"n_predict": 8,
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"stream": True,
|
||||
})
|
||||
res_non_stream = server.make_request("POST", "/completion", data={
|
||||
"n_predict": 8,
|
||||
"prompt": "I believe the meaning of life is",
|
||||
})
|
||||
content_stream = ""
|
||||
for data in res_stream:
|
||||
content_stream += data["content"]
|
||||
assert content_stream == res_non_stream.body["content"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_slots", [1, 2])
|
||||
def test_consistent_result_same_seed(n_slots: int):
|
||||
global server
|
||||
@ -221,3 +239,24 @@ def test_completion_parallel_slots(n_slots: int, n_requests: int):
|
||||
assert len(res.body["content"]) > 10
|
||||
# FIXME: the result is not deterministic when using other slot than slot 0
|
||||
# assert match_regex(re_content, res.body["content"])
|
||||
|
||||
|
||||
def test_n_probs():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
"n_probs": 10,
|
||||
"temperature": 0.0,
|
||||
"n_predict": 5,
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert "completion_probabilities" in res.body
|
||||
assert len(res.body["completion_probabilities"]) == 5
|
||||
for tok in res.body["completion_probabilities"]:
|
||||
assert "probs" in tok
|
||||
assert len(tok["probs"]) == 10
|
||||
for prob in tok["probs"]:
|
||||
assert "prob" in prob
|
||||
assert "tok_str" in prob
|
||||
assert 0.0 <= prob["prob"] <= 1.0
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
@ -40,17 +41,6 @@ using json = nlohmann::ordered_json;
|
||||
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
||||
|
||||
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
|
||||
enum error_type {
|
||||
ERROR_TYPE_INVALID_REQUEST,
|
||||
ERROR_TYPE_AUTHENTICATION,
|
||||
ERROR_TYPE_SERVER,
|
||||
ERROR_TYPE_NOT_FOUND,
|
||||
ERROR_TYPE_PERMISSION,
|
||||
ERROR_TYPE_UNAVAILABLE, // custom error
|
||||
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json & body, const std::string & key, const T & default_value) {
|
||||
// Fallback null to default value
|
||||
@ -485,48 +475,11 @@ static std::string tokens_to_output_formatted_string(const llama_context * ctx,
|
||||
return out;
|
||||
}
|
||||
|
||||
struct completion_token_output {
|
||||
llama_token tok;
|
||||
std::string text_to_send;
|
||||
|
||||
struct token_prob {
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
};
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
|
||||
json out = json::array();
|
||||
|
||||
for (const auto & prob : probs) {
|
||||
json probs_for_token = json::array();
|
||||
|
||||
for (const auto & p : prob.probs) {
|
||||
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json {
|
||||
{"tok_str", tok_str},
|
||||
{"prob", p.prob},
|
||||
});
|
||||
}
|
||||
|
||||
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json {
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
|
||||
const std::string str =
|
||||
std::string(event) + ": " +
|
||||
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n"; // note: these newlines are important (not sure why though, if you know, add a comment to explain)
|
||||
"\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
|
||||
|
||||
LOG_DBG("data stream, to_send: %s", str.c_str());
|
||||
|
||||
@ -604,164 +557,6 @@ static json oaicompat_completion_params_parse(
|
||||
return llama_params;
|
||||
}
|
||||
|
||||
static json format_final_response_oaicompat(const json & request, const json & result, const std::string & completion_id, bool streaming = false, bool verbose = false) {
|
||||
bool stopped_word = result.count("stopped_word") != 0;
|
||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
||||
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
||||
std::string content = json_value(result, "content", std::string(""));
|
||||
|
||||
std::string finish_reason = "length";
|
||||
if (stopped_word || stopped_eos) {
|
||||
finish_reason = "stop";
|
||||
}
|
||||
|
||||
json choices =
|
||||
streaming ? json::array({json{{"finish_reason", finish_reason},
|
||||
{"index", 0},
|
||||
{"delta", json::object()}}})
|
||||
: json::array({json{{"finish_reason", finish_reason},
|
||||
{"index", 0},
|
||||
{"message", json{{"content", content},
|
||||
{"role", "assistant"}}}}});
|
||||
|
||||
std::time_t t = std::time(0);
|
||||
|
||||
json res = json {
|
||||
{"choices", choices},
|
||||
{"created", t},
|
||||
{"model",
|
||||
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
||||
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
||||
{"usage", json {
|
||||
{"completion_tokens", num_tokens_predicted},
|
||||
{"prompt_tokens", num_prompt_tokens},
|
||||
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
|
||||
}},
|
||||
{"id", completion_id}
|
||||
};
|
||||
|
||||
// extra fields for debugging purposes
|
||||
if (verbose) {
|
||||
res["__verbose"] = result;
|
||||
}
|
||||
|
||||
if (result.contains("completion_probabilities")) {
|
||||
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
||||
}
|
||||
|
||||
if (result.contains("timings")) {
|
||||
res.push_back({"timings", json_value(result, "timings", json::object())});
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// return value is vector as there is one case where we might need to generate two responses
|
||||
static std::vector<json> format_partial_response_oaicompat(const json & result, const std::string & completion_id) {
|
||||
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
||||
return std::vector<json>({result});
|
||||
}
|
||||
|
||||
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
||||
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
||||
|
||||
bool stopped_word = json_value(result, "stopped_word", false);
|
||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||
bool stopped_limit = json_value(result, "stopped_limit", false);
|
||||
std::string content = json_value(result, "content", std::string(""));
|
||||
|
||||
std::string finish_reason;
|
||||
if (stopped_word || stopped_eos) {
|
||||
finish_reason = "stop";
|
||||
}
|
||||
if (stopped_limit) {
|
||||
finish_reason = "length";
|
||||
}
|
||||
|
||||
std::time_t t = std::time(0);
|
||||
|
||||
json choices;
|
||||
|
||||
if (!finish_reason.empty()) {
|
||||
choices = json::array({json{{"finish_reason", finish_reason},
|
||||
{"index", 0},
|
||||
{"delta", json::object()}}});
|
||||
} else {
|
||||
if (first) {
|
||||
if (content.empty()) {
|
||||
choices = json::array({json{{"finish_reason", nullptr},
|
||||
{"index", 0},
|
||||
{"delta", json{{"role", "assistant"}}}}});
|
||||
} else {
|
||||
// We have to send this as two updates to conform to openai behavior
|
||||
json initial_ret = json{{"choices", json::array({json{
|
||||
{"finish_reason", nullptr},
|
||||
{"index", 0},
|
||||
{"delta", json{
|
||||
{"role", "assistant"}
|
||||
}}}})},
|
||||
{"created", t},
|
||||
{"id", completion_id},
|
||||
{"model", modelname},
|
||||
{"object", "chat.completion.chunk"}};
|
||||
|
||||
json second_ret = json{
|
||||
{"choices", json::array({json{{"finish_reason", nullptr},
|
||||
{"index", 0},
|
||||
{"delta", json{
|
||||
{"content", content}}}
|
||||
}})},
|
||||
{"created", t},
|
||||
{"id", completion_id},
|
||||
{"model", modelname},
|
||||
{"object", "chat.completion.chunk"}};
|
||||
|
||||
return std::vector<json>({initial_ret, second_ret});
|
||||
}
|
||||
} else {
|
||||
// Some idiosyncrasy in task processing logic makes several trailing calls
|
||||
// with empty content, we ignore these at the calee site.
|
||||
if (content.empty()) {
|
||||
return std::vector<json>({json::object()});
|
||||
}
|
||||
|
||||
choices = json::array({json{
|
||||
{"finish_reason", nullptr},
|
||||
{"index", 0},
|
||||
{"delta",
|
||||
json{
|
||||
{"content", content},
|
||||
}},
|
||||
}});
|
||||
}
|
||||
}
|
||||
|
||||
json ret = json {
|
||||
{"choices", choices},
|
||||
{"created", t},
|
||||
{"id", completion_id},
|
||||
{"model", modelname},
|
||||
{"object", "chat.completion.chunk"}
|
||||
};
|
||||
|
||||
if (result.contains("timings")) {
|
||||
ret.push_back({"timings", json_value(result, "timings", json::object())});
|
||||
}
|
||||
|
||||
if (!finish_reason.empty()) {
|
||||
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
||||
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
||||
ret.push_back({"usage", json {
|
||||
{"completion_tokens", num_tokens_predicted},
|
||||
{"prompt_tokens", num_prompt_tokens},
|
||||
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
|
||||
}});
|
||||
}
|
||||
|
||||
return std::vector<json>({ret});
|
||||
}
|
||||
|
||||
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
|
||||
json data = json::array();
|
||||
int i = 0;
|
||||
@ -853,43 +648,3 @@ static json format_detokenized_response(const std::string & content) {
|
||||
{"content", content}
|
||||
};
|
||||
}
|
||||
|
||||
static json format_error_response(const std::string & message, const enum error_type type) {
|
||||
std::string type_str;
|
||||
int code = 500;
|
||||
switch (type) {
|
||||
case ERROR_TYPE_INVALID_REQUEST:
|
||||
type_str = "invalid_request_error";
|
||||
code = 400;
|
||||
break;
|
||||
case ERROR_TYPE_AUTHENTICATION:
|
||||
type_str = "authentication_error";
|
||||
code = 401;
|
||||
break;
|
||||
case ERROR_TYPE_NOT_FOUND:
|
||||
type_str = "not_found_error";
|
||||
code = 404;
|
||||
break;
|
||||
case ERROR_TYPE_SERVER:
|
||||
type_str = "server_error";
|
||||
code = 500;
|
||||
break;
|
||||
case ERROR_TYPE_PERMISSION:
|
||||
type_str = "permission_error";
|
||||
code = 403;
|
||||
break;
|
||||
case ERROR_TYPE_NOT_SUPPORTED:
|
||||
type_str = "not_supported_error";
|
||||
code = 501;
|
||||
break;
|
||||
case ERROR_TYPE_UNAVAILABLE:
|
||||
type_str = "unavailable_error";
|
||||
code = 503;
|
||||
break;
|
||||
}
|
||||
return json {
|
||||
{"code", code},
|
||||
{"message", message},
|
||||
{"type", type_str},
|
||||
};
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user