mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
llava : support for Yi-VL and fix for mobileVLM (#5093)
* Support for Yi-VL, templating fix for mobileVLM * ws * Update examples/llava/clip.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update llava-cli.cpp * Update clip.cpp bugfix for new conversions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
753eafed0e
commit
6db2b41a76
@ -98,6 +98,7 @@ static std::string format(const char * fmt, ...) {
|
|||||||
|
|
||||||
enum projector_type {
|
enum projector_type {
|
||||||
PROJECTOR_TYPE_MLP,
|
PROJECTOR_TYPE_MLP,
|
||||||
|
PROJECTOR_TYPE_MLP_NORM,
|
||||||
PROJECTOR_TYPE_LDP,
|
PROJECTOR_TYPE_LDP,
|
||||||
PROJECTOR_TYPE_UNKNOWN,
|
PROJECTOR_TYPE_UNKNOWN,
|
||||||
};
|
};
|
||||||
@ -304,10 +305,18 @@ struct clip_vision_model {
|
|||||||
struct ggml_tensor * projection;
|
struct ggml_tensor * projection;
|
||||||
|
|
||||||
// LLaVA projection
|
// LLaVA projection
|
||||||
struct ggml_tensor * mm_0_w;
|
struct ggml_tensor * mm_0_w = NULL;
|
||||||
struct ggml_tensor * mm_0_b;
|
struct ggml_tensor * mm_0_b = NULL;
|
||||||
struct ggml_tensor * mm_2_w;
|
struct ggml_tensor * mm_2_w = NULL;
|
||||||
struct ggml_tensor * mm_2_b;
|
struct ggml_tensor * mm_2_b = NULL;
|
||||||
|
|
||||||
|
// Yi type models with mlp+normalization projection
|
||||||
|
struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
|
||||||
|
struct ggml_tensor * mm_1_b = NULL;
|
||||||
|
struct ggml_tensor * mm_3_w = NULL;
|
||||||
|
struct ggml_tensor * mm_3_b = NULL;
|
||||||
|
struct ggml_tensor * mm_4_w = NULL;
|
||||||
|
struct ggml_tensor * mm_4_b = NULL;
|
||||||
|
|
||||||
// MobileVLM projection
|
// MobileVLM projection
|
||||||
struct ggml_tensor * mm_model_mlp_1_w;
|
struct ggml_tensor * mm_model_mlp_1_w;
|
||||||
@ -460,6 +469,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
// pre-layernorm
|
// pre-layernorm
|
||||||
{
|
{
|
||||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||||
|
ggml_set_name(embeddings, "pre_ln");
|
||||||
|
|
||||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
|
||||||
}
|
}
|
||||||
@ -575,6 +585,27 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
|
|
||||||
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
||||||
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
||||||
|
|
||||||
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||||
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
||||||
|
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
|
||||||
|
// First LayerNorm
|
||||||
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||||
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
|
||||||
|
model.mm_1_b);
|
||||||
|
|
||||||
|
// GELU activation
|
||||||
|
embeddings = ggml_gelu(ctx0, embeddings);
|
||||||
|
|
||||||
|
// Second linear layer
|
||||||
|
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
|
||||||
|
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
|
||||||
|
|
||||||
|
// Second LayerNorm
|
||||||
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||||
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
|
||||||
|
model.mm_4_b);
|
||||||
}
|
}
|
||||||
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
// MobileVLM projector
|
// MobileVLM projector
|
||||||
@ -808,6 +839,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
else {
|
else {
|
||||||
new_clip->proj_type = PROJECTOR_TYPE_MLP;
|
new_clip->proj_type = PROJECTOR_TYPE_MLP;
|
||||||
}
|
}
|
||||||
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
|
if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
|
||||||
|
new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
@ -956,11 +992,29 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||||
|
|
||||||
// LLaVA projection
|
// LLaVA projection
|
||||||
if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
||||||
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
||||||
|
try {
|
||||||
|
// Yi-type llava
|
||||||
|
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
|
||||||
|
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
|
||||||
|
} catch (std::runtime_error & e) { }
|
||||||
|
try {
|
||||||
|
// missing in Yi-type llava
|
||||||
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
|
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
|
||||||
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
|
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
|
||||||
|
} catch (std::runtime_error & e) { }
|
||||||
|
try {
|
||||||
|
// Yi-type llava
|
||||||
|
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
|
||||||
|
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
|
||||||
|
} catch (std::runtime_error & e) { }
|
||||||
|
try {
|
||||||
|
// Yi-type llava
|
||||||
|
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
|
||||||
|
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
|
||||||
|
} catch (std::runtime_error & e) { }
|
||||||
}
|
}
|
||||||
else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
// MobileVLM projection
|
// MobileVLM projection
|
||||||
@ -1432,6 +1486,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||||||
}
|
}
|
||||||
else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
else if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
return ctx->vision_model.mm_2_b->ne[0];
|
return ctx->vision_model.mm_2_b->ne[0];
|
||||||
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
|
return ctx->vision_model.mm_3_b->ne[0];
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
||||||
|
@ -148,10 +148,35 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
|
||||||
|
|
||||||
// llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
|
std::string system_prompt, user_prompt;
|
||||||
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, add_bos);
|
size_t image_pos = prompt.find("<image>");
|
||||||
|
if (image_pos != std::string::npos) {
|
||||||
|
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||||
|
|
||||||
|
system_prompt = prompt.substr(0, image_pos);
|
||||||
|
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||||
|
// We replace \n with actual newlines in user_prompt, just in case -e was not used in templating string
|
||||||
|
size_t pos = 0;
|
||||||
|
while ((pos = user_prompt.find("\\n", pos)) != std::string::npos) {
|
||||||
|
user_prompt.replace(pos, 2, "\n");
|
||||||
|
pos += 1; // Advance past the replaced newline
|
||||||
|
}
|
||||||
|
while ((pos = system_prompt.find("\\n", pos)) != std::string::npos) {
|
||||||
|
system_prompt.replace(pos, 2, "\n");
|
||||||
|
pos += 1; // Advance past the replaced newline
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("system_prompt: %s\n", system_prompt.c_str());
|
||||||
|
printf("user_prompt: %s\n", user_prompt.c_str());
|
||||||
|
} else {
|
||||||
|
// llava-1.5 native mode
|
||||||
|
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
||||||
|
user_prompt = prompt + "\nASSISTANT:";
|
||||||
|
}
|
||||||
|
|
||||||
|
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, add_bos);
|
||||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
||||||
eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||||
|
|
||||||
// generate the response
|
// generate the response
|
||||||
|
|
||||||
@ -162,6 +187,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||||||
for (int i = 0; i < max_tgt_len; i++) {
|
for (int i = 0; i < max_tgt_len; i++) {
|
||||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||||
if (strcmp(tmp, "</s>") == 0) break;
|
if (strcmp(tmp, "</s>") == 0) break;
|
||||||
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||||
|
|
||||||
printf("%s", tmp);
|
printf("%s", tmp);
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
|
Loading…
Reference in New Issue
Block a user