llama : combine repetition, frequency and presence penalties in 1 call

This commit is contained in:
Georgi Gerganov 2023-10-20 17:05:46 +03:00
parent cd1e937821
commit 6e6587656f
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
5 changed files with 51 additions and 118 deletions

View File

@ -3,7 +3,7 @@
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
result->params = params;
result->grammar = nullptr;
// if there is a grammar, parse it
@ -71,17 +71,16 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const int n_ctx = llama_n_ctx(ctx_main);
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_prev : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
@ -97,7 +96,7 @@ llama_token llama_sampling_sample(
float * logits = llama_get_logits_ith(ctx_main, idx);
// Apply params.logit_bias map
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
@ -117,14 +116,10 @@ llama_token llama_sampling_sample(
// apply penalties
if (!prev.empty()) {
const float nl_logit = logits[llama_token_nl(ctx_main)];
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
llama_sample_repetition_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - repeat_last_n,
repeat_last_n, repeat_penalty, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
@ -141,7 +136,7 @@ llama_token llama_sampling_sample(
}
if (temp <= 0) {
// Greedy sampling
// greedy sampling
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
@ -152,8 +147,9 @@ llama_token llama_sampling_sample(
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// Temperature sampling
// temperature sampling
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);

View File

@ -10,6 +10,8 @@
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 256; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
@ -22,11 +24,9 @@ typedef struct llama_sampling_params {
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
int32_t n_prev = 256; // number of previous tokens to remember
bool penalize_nl = true; // consider newlines as a repeatable token
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
@ -35,8 +35,6 @@ typedef struct llama_sampling_params {
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
} llama_sampling_params;
// general sampler context

View File

@ -1018,8 +1018,8 @@ enum e_model {
};
static const size_t kB = 1024;
static const size_t MB = kB*kB;
static const size_t GB = kB*kB*kB;
static const size_t MB = 1024*kB;
static const size_t GB = 1024*MB;
struct llama_hparams {
bool vocab_only;
@ -7414,37 +7414,8 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array
llama_sample_temp(ctx, candidates_p, temp);
}
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
if (last_tokens_size == 0 || penalty == 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
if (token_iter == last_tokens + last_tokens_size) {
continue;
}
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty;
} else {
candidates->data[i].logit /= penalty;
}
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
void llama_sample_repetition_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float repeat_penalty, float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 || (repeat_penalty == 1.0f && alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
return;
}
@ -7458,12 +7429,21 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
auto token_iter = token_count.find(candidates->data[i].id);
const auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
int count = token_iter->second;
const int count = token_iter->second;
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= repeat_penalty;
} else {
candidates->data[i].logit /= repeat_penalty;
}
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
}

10
llama.h
View File

@ -560,19 +560,13 @@ extern "C" {
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(
LLAMA_API void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float repeat_penalty,
float alpha_frequency,
float alpha_presence);

View File

@ -8,11 +8,9 @@
#include <cmath>
#include <numeric>
#include <cassert>
#include <iostream>
#include <vector>
#include <algorithm>
static void dump(const llama_token_data_array * candidates) {
for (size_t i = 0; i < candidates->size; i++) {
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
@ -21,7 +19,6 @@ static void dump(const llama_token_data_array * candidates) {
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
@ -37,13 +34,12 @@ static void test_top_k(const std::vector<float> & probs, const std::vector<float
llama_sample_top_k(nullptr, &candidates_p, k, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
}
}
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
@ -59,13 +55,12 @@ static void test_top_p(const std::vector<float> & probs, const std::vector<float
llama_sample_top_p(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
@ -80,13 +75,12 @@ static void test_tfs(const std::vector<float> & probs, const std::vector<float>
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
@ -101,18 +95,17 @@ static void test_typical(const std::vector<float> & probs, const std::vector<flo
llama_sample_typical(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_repetition_penalty(
static void test_repetition_penalties(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float penalty
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
) {
assert(probs.size() == expected_probs.size());
GGML_ASSERT(probs.size() == expected_probs.size());
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
@ -125,41 +118,13 @@ static void test_repetition_penalty(
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty);
llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
}
}
static void test_frequency_presence_penalty(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float alpha_frequency, float alpha_presence
) {
assert(probs.size() == expected_probs.size());
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
@ -181,13 +146,13 @@ int main(void) {
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
printf("OK\n");