diff --git a/common/common.cpp b/common/common.cpp index 0e4b8bab2..0a7096171 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -672,6 +672,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } + } else if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.logits_file = argv[i]; } else if (arg == "--perplexity" || arg == "--all-logits") { params.logits_all = true; } else if (arg == "--ppl-stride") { @@ -716,6 +722,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } params.multiple_choice_tasks = std::stoi(argv[i]); + } else if (arg == "--kl-divergence") { + params.kl_divergence = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { @@ -967,6 +975,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks); printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n"); printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks); + printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base"); printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); diff --git a/common/common.h b/common/common.h index c69ad7e94..214a379b5 100644 --- a/common/common.h +++ b/common/common.h @@ -91,6 +91,7 @@ struct gpt_params { std::string input_suffix = ""; // string to suffix user inputs with std::vector antiprompt; // string upon seeing which more user input is prompted std::string logdir = ""; // directory in which to save YAML log files + std::string logits_file = ""; // file for saving *all* logits std::vector kv_overrides; @@ -111,6 +112,8 @@ struct gpt_params { bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed + bool kl_divergence = false; // compute KL-divergence + bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index b7ef9a084..1b7f85f49 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -112,6 +112,43 @@ static results_log_softmax log_softmax(int n_vocab, const float * logits, int to return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } +static inline int nearest_int(float fval) { + //assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) { + float max_logit = logits[0]; + float min_logit = logits[0]; + for (int i = 1; i < n_vocab; ++i) { + max_logit = std::max(max_logit, logits[i]); + min_logit = std::min(min_logit, logits[i]); + } + min_logit = std::max(min_logit, max_logit - 16); + double sum_exp = 0.0; + for (int i = 0; i < n_vocab; ++i) { + sum_exp += expf(logits[i] - max_logit); + } + const float log_sum_exp = log(sum_exp); + const float min_log_prob = min_logit - max_logit - log_sum_exp; + const float scale = (max_logit - min_logit)/65535.f; + float * d = (float *)log_prob; + d[0] = scale; + d[1] = min_log_prob; + log_prob += 4; + if (scale) { + const float inv_scale = 1/scale; + for (int i = 0; i < n_vocab; ++i) { + log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; + } + } else { + std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); + } + return max_logit + log_sum_exp - logits[tok]; +} + static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history @@ -147,6 +184,114 @@ static void process_logits( } } +static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token, + std::vector & workers, std::vector & log_probs, double & nll, double & nll2) { + std::mutex mutex; + const int nv = 2*((n_vocab + 1)/2) + 4; + int counter = 0; + auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { + double local_nll = 0; + double local_nll2 = 0; + while (true) { + std::unique_lock lock(mutex); + int i = counter++; + if (i >= n_token) { + nll += local_nll; nll2 += local_nll2; + break; + } + lock.unlock(); + const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]); + local_nll += v; + local_nll2 += v*v; + } + }; + for (auto & w : workers) { + w = std::thread(compute); + } + compute(); + for (auto & w : workers) { + w.join(); + } + out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); +} + +struct kl_divergence_result { + double sum_nll = 0; + double sum_nll2 = 0; + double sum_kld = 0; + double sum_kld2 = 0; + double sum_nll_diff = 0; + double sum_nll_diff2 = 0; + size_t count = 0; +}; + +static void log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { + float max_logit = logits[0]; + for (int i = 1; i < n_vocab; ++i) { + max_logit = std::max(max_logit, logits[i]); + } + double sum_exp = 0.0; + for (int i = 0; i < n_vocab; ++i) { + sum_exp += expf(logits[i] - max_logit); + } + const float log_sum_exp = log(sum_exp); + const float * d = (const float *)base_log_prob; + const float scale = d[0]; + const float min_log_prob = d[1]; + base_log_prob += 4; + float nll = max_logit + log_sum_exp - logits[tok]; + kld.sum_nll += nll; + kld.sum_nll2 += nll*nll; + nll += (scale*base_log_prob[tok] + min_log_prob); + kld.sum_nll_diff += nll; + kld.sum_nll_diff2 += nll*nll; + max_logit += log_sum_exp; + double sum = 0; + for (int i = 0; i < n_vocab; ++i) { + const float p_log_base = scale*base_log_prob[i] + min_log_prob; + if (p_log_base > -16.f) { + const float p_base = expf(p_log_base); + sum += p_base * (p_log_base - logits[i] + max_logit); + } + } + kld.sum_kld += sum; + kld.sum_kld2 += sum*sum; + ++kld.count; +} + +static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, + std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld) { + std::mutex mutex; + const int nv = 2*((n_vocab + 1)/2) + 4; + int counter = 0; + auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv] () { + kl_divergence_result local_kld; + while (true) { + std::unique_lock lock(mutex); + int i = counter++; + if (i >= n_token) { + kld.sum_nll += local_kld.sum_nll; + kld.sum_nll2 += local_kld.sum_nll2; + kld.sum_kld += local_kld.sum_kld; + kld.sum_kld2 += local_kld.sum_kld2; + kld.sum_nll_diff += local_kld.sum_nll_diff; + kld.sum_nll_diff2 += local_kld.sum_nll_diff2; + kld.count += local_kld.count; + break; + } + lock.unlock(); + log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); + } + }; + for (auto & w : workers) { + w = std::thread(compute); + } + compute(); + for (auto & w : workers) { + w.join(); + } +} + static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` @@ -294,6 +439,18 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); + std::ofstream logits_stream; + if (!params.logits_file.empty()) { + logits_stream.open(params.logits_file.c_str()); + if (!logits_stream.is_open()) { + fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); + return {}; + } + fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); + logits_stream.write("_logits_", 8); + logits_stream.write((const char *)&n_ctx, sizeof(n_ctx)); + } + auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -336,6 +493,15 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par std::vector workers(std::thread::hardware_concurrency() - 1); + std::vector log_probs; + if (!params.logits_file.empty()) { + logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); + logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); + logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0])); + const int nv = 2*((n_vocab + 1)/2) + 4; + log_probs.resize(n_ctx * nv); + } + for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; @@ -398,8 +564,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // process the entire prompt. const int first = n_ctx/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); - process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); + if (!params.logits_file.empty()) { + process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, log_probs, nll, nll2); + } else { + process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); + } count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) @@ -1414,6 +1585,148 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params printf("\n"); } +static void kl_divergence(llama_context * ctx, const gpt_params & params) { + if (params.logits_file.empty()) { + fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); + return; + } + std::ifstream in(params.logits_file.c_str(), std::ios::binary); + if (!in) { + fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str()); + return; + } + { + char check[9]; check[8] = 0; + in.read(check, 8); + if (in.fail() || strncmp("_logits_", check, 8) != 0) { + fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); + return; + } + } + + uint32_t n_ctx; + in.read((char *)&n_ctx, sizeof(n_ctx)); + if (n_ctx > llama_n_ctx(ctx)) { + fprintf(stderr, "%s: %s has been computed with %d, while the current context is %d. Increase it with -c and retry\n", + __func__, params.logits_file.c_str(), n_ctx, params.n_ctx); + } + + int n_vocab, n_chunk; + in.read((char *)&n_vocab, sizeof(n_vocab)); + in.read((char *)&n_chunk, sizeof(n_chunk)); + if (in.fail()) { + fprintf(stderr, "%s: failed rwading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); + return; + } + if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { + fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); + } + + std::vector tokens(n_ctx * n_chunk); + if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { + fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); + return; + } + + const int n_batch = params.n_batch; + const int num_batches = (n_ctx + n_batch - 1)/n_batch; + const int nv = 2*((n_vocab + 1)/2) + 4; + const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + + std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); + std::vector logits; + if (num_batches > 1) { + logits.reserve(n_ctx * n_vocab); + } + + std::vector workers(std::thread::hardware_concurrency() - 1); + + auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { + if (count < 1) { + return std::make_pair(0., 0.); + } + double f = sum/count; + double df = sum2/count - f*f; + df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; + return std::make_pair(f, df); + }; + + kl_divergence_result kld; + + for (int i = 0; i < n_chunk; ++i) { + const int start = i * n_ctx; + const int end = start + n_ctx; + + const auto t_start = std::chrono::high_resolution_clock::now(); + + if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { + fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i); + return; + } + + // clear the KV cache + llama_kv_cache_clear(ctx); + + for (int j = 0; j < num_batches; ++j) { + const int batch_start = start + j * n_batch; + const int batch_size = std::min(end - batch_start, n_batch); + + // save original token and restore it after eval + const auto token_org = tokens[batch_start]; + + // add BOS token for the first batch of each chunk + if (add_bos && j == 0) { + tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); + } + + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + + // restore the original token in case it was set to BOS + tokens[batch_start] = token_org; + + if (num_batches > 1) { + const auto * batch_logits = llama_get_logits(ctx); + logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); + } + } + + const auto t_end = std::chrono::high_resolution_clock::now(); + + if (i == 0) { + const float t_total = std::chrono::duration(t_end - t_start).count(); + fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); + int total_seconds = (int)(t_total * n_chunk); + if (total_seconds >= 60*60) { + fprintf(stderr, "%d hours ", total_seconds / (60*60)); + total_seconds = total_seconds % (60*60); + } + fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); + + printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence\n"); + } + + const int first = n_ctx/2; + const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); + process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, log_probs_uint16, kld); + + auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); + auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count); + auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); + + printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf\n", i+1, exp(ppl.first), + log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second); + + fflush(stdout); + + logits.clear(); + } + printf("\n"); + +} int main(int argc, char ** argv) { gpt_params params; @@ -1476,6 +1789,8 @@ int main(int argc, char ** argv) { winogrande_score(ctx, params); } else if (params.multiple_choice) { multiple_choice_score(ctx, params); + } else if (params.kl_divergence) { + kl_divergence(ctx, params); } else { results = perplexity(ctx, params); }