diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 922fdb199..f99126bbd 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -6355,11 +6355,13 @@ inline void ggml_cuda_op_mul_mat_cublas( int id; CUDA_CHECK(cudaGetDevice(&id)); + const int compute_capability = g_compute_capabilities[id]; + // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into - int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + const int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; - const int compute_capability = g_compute_capabilities[id]; + const bool is_split = row_diff != src0->ne[1]; if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0)) { // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 @@ -6385,26 +6387,41 @@ inline void ggml_cuda_op_mul_mat_cublas( } const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; - size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc(ldc*src1_ncols * sizeof(half), &dst_as); + if (!is_split) { + const half alpha = 1.0f; + const half beta = 0.0f; - const half alpha_f16 = 1.0f; - const half beta_f16 = 0.0f; + size_t dst_as = 0; + half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); - CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); - CUBLAS_CHECK( - cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, - row_diff, src1_ncols, ne10, - &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha, src0_ptr, CUDA_R_16F, ne00, src1_ptr, CUDA_R_16F, ne10, - &beta_f16, dst_f16, CUDA_R_16F, ldc, - CUBLAS_COMPUTE_16F, - CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + &beta, dst_f16, CUDA_R_16F, ldc, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16, dst_dd_i, ldc*src1_ncols, stream); + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); - ggml_cuda_pool_free(dst_f16, dst_as); + ggml_cuda_pool_free(dst_f16, dst_as); + } else { + const float alpha = 1.0f; + const float beta = 0.0f; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta, dst_dd_i, CUDA_R_32F, ldc, + CUBLAS_COMPUTE_32F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } if (src0_as != 0) { ggml_cuda_pool_free(src0_as_f16, src0_as);