mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
whisper : tokenizer fix + re-enable tokenizer test for LLaMa (#3096)
* Fix für #2721 * Reenable tokenizer test for LLaMa * Add `console.cpp` dependency * Fix dependency to `common` * Fixing wrong fix. * Make console usage platform specific Work on compiler warnings. * Adapting makefile * Remove trailing whitespace * Adapting the other parts of the makefile * Fix typo.
This commit is contained in:
parent
1b6c650d16
commit
71ca2fad7d
6
Makefile
6
Makefile
@ -2,7 +2,7 @@
|
|||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative tests/test-c.o
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative tests/test-c.o
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1
|
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
||||||
|
|
||||||
# Code coverage output files
|
# Code coverage output files
|
||||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||||
@ -49,7 +49,7 @@ test: $(TEST_TARGETS)
|
|||||||
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
|
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
|
||||||
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
|
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
|
||||||
continue; \
|
continue; \
|
||||||
elif [ "$$test_target" = "tests/test-tokenizer-1" ]; then \
|
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
|
||||||
continue; \
|
continue; \
|
||||||
else \
|
else \
|
||||||
echo "Running test $$test_target..."; \
|
echo "Running test $$test_target..."; \
|
||||||
@ -605,7 +605,7 @@ tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h gg
|
|||||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-tokenizer-1: tests/test-tokenizer-1.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-c.o: tests/test-c.c llama.h
|
tests/test-c.o: tests/test-c.c llama.h
|
||||||
|
@ -3121,10 +3121,9 @@ struct llm_tokenizer_spm {
|
|||||||
while (offs < text.size()) {
|
while (offs < text.size()) {
|
||||||
llm_symbol sym;
|
llm_symbol sym;
|
||||||
size_t len = utf8_len(text[offs]);
|
size_t len = utf8_len(text[offs]);
|
||||||
GGML_ASSERT(offs + len <= text.size());
|
|
||||||
sym.text = text.c_str() + offs;
|
sym.text = text.c_str() + offs;
|
||||||
sym.n = len;
|
sym.n = std::min(len, text.size() - offs);
|
||||||
offs += len;
|
offs += sym.n;
|
||||||
sym.prev = index - 1;
|
sym.prev = index - 1;
|
||||||
sym.next = offs == text.size() ? -1 : index + 1;
|
sym.next = offs == text.size() ? -1 : index + 1;
|
||||||
index++;
|
index++;
|
||||||
@ -6218,7 +6217,7 @@ int llama_tokenize_with_model(
|
|||||||
auto res = llama_tokenize_internal(model->vocab, text, add_bos);
|
auto res = llama_tokenize_internal(model->vocab, text, add_bos);
|
||||||
|
|
||||||
if (n_max_tokens < (int) res.size()) {
|
if (n_max_tokens < (int) res.size()) {
|
||||||
LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
||||||
return -((int) res.size());
|
return -((int) res.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -29,9 +29,8 @@ llama_build_executable(test-tokenizer-0-llama.cpp)
|
|||||||
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
||||||
#llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
#llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||||
llama_build_executable(test-tokenizer-1.cpp)
|
llama_build_executable(test-tokenizer-1-llama.cpp)
|
||||||
# test-tokenizer-1 requires a BPE vocab. re-enable when we have one.
|
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
#llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
|
||||||
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
#include "console.h"
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
@ -89,6 +90,12 @@ int main(int argc, char **argv) {
|
|||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
// We need this for unicode console support
|
||||||
|
console::init(false, false);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
#endif
|
||||||
|
|
||||||
bool success = true;
|
bool success = true;
|
||||||
|
|
||||||
for (const auto & test_kv : k_tests()) {
|
for (const auto & test_kv : k_tests()) {
|
||||||
|
127
tests/test-tokenizer-1-llama.cpp
Normal file
127
tests/test-tokenizer-1-llama.cpp
Normal file
@ -0,0 +1,127 @@
|
|||||||
|
#include "llama.h"
|
||||||
|
#include "common.h"
|
||||||
|
#include "console.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <string>
|
||||||
|
#include <codecvt>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <locale>
|
||||||
|
|
||||||
|
typedef int codepoint;
|
||||||
|
|
||||||
|
std::string codepoint_to_utf8(codepoint cp) {
|
||||||
|
std::string result;
|
||||||
|
if (0x00 <= cp && cp <= 0x7f) {
|
||||||
|
result.push_back(cp);
|
||||||
|
} else if (0x80 <= cp && cp <= 0x7ff) {
|
||||||
|
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
} else if (0x800 <= cp && cp <= 0xffff) {
|
||||||
|
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
|
||||||
|
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
} else if (0x10000 <= cp && cp <= 0x10ffff) {
|
||||||
|
result.push_back(0xf0 | ((cp >> 18) & 0x07));
|
||||||
|
result.push_back(0x80 | ((cp >> 12) & 0x3f));
|
||||||
|
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
} else {
|
||||||
|
throw std::invalid_argument("invalid codepoint");
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
if (argc < 2) {
|
||||||
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string fname = argv[1];
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
|
||||||
|
llama_backend_init(false);
|
||||||
|
|
||||||
|
// load the vocab
|
||||||
|
{
|
||||||
|
auto lparams = llama_context_default_params();
|
||||||
|
|
||||||
|
lparams.vocab_only = true;
|
||||||
|
|
||||||
|
model = llama_load_model_from_file(fname.c_str(), lparams);
|
||||||
|
|
||||||
|
if (model == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, lparams);
|
||||||
|
|
||||||
|
if (ctx == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
|
llama_free_model(model);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM);
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
// We need this for unicode console support
|
||||||
|
console::init(false, false);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
#endif
|
||||||
|
|
||||||
|
const int n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
|
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
||||||
|
if (check != str) {
|
||||||
|
fprintf(stderr, "%s : error: token %d detokenizes to >%s<(%llu) but tokenization of this detokenizes to >%s<(%llu)\n",
|
||||||
|
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
|
||||||
|
if(i != 3)
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (codepoint cp = 0x0000; cp < 0xffff; ++cp) {
|
||||||
|
if (cp < 0xd800 || cp > 0xdfff) {
|
||||||
|
std::string str = codepoint_to_utf8(cp);
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
||||||
|
if (str != check) {
|
||||||
|
fprintf(stderr, "%s : error: codepoint %d detokenizes to >%s<(%llu) instead of >%s<(%llu)\n",
|
||||||
|
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||||
|
if(cp != 0 && cp != 9601)
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (codepoint cp = 0x10000; cp < 0x0010ffff; ++cp) {
|
||||||
|
std::string str = codepoint_to_utf8(cp);
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
||||||
|
if (str != check) {
|
||||||
|
fprintf(stderr, "%s : error: codepoint %d detokenizes to >%s<(%llu) instead of >%s<(%llu)\n",
|
||||||
|
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||||
|
return 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_free_model(model);
|
||||||
|
llama_free(ctx);
|
||||||
|
|
||||||
|
llama_backend_free();
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
@ -1,108 +0,0 @@
|
|||||||
#include "llama.h"
|
|
||||||
#include "common.h"
|
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstring>
|
|
||||||
#include <string>
|
|
||||||
#include <codecvt>
|
|
||||||
#include <map>
|
|
||||||
#include <vector>
|
|
||||||
#include <locale>
|
|
||||||
|
|
||||||
static std::string escape_whitespace(const std::string& text) {
|
|
||||||
std::string result = "\xe2\x96\x81";
|
|
||||||
for (size_t offs = 0; offs < text.length(); ++offs) {
|
|
||||||
if (text[offs] == ' ') {
|
|
||||||
result += "\xe2\x96\x81";
|
|
||||||
} else {
|
|
||||||
result += text[offs];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
|
||||||
if (argc < 2) {
|
|
||||||
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::string fname = argv[1];
|
|
||||||
|
|
||||||
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
|
||||||
|
|
||||||
llama_model * model;
|
|
||||||
llama_context * ctx;
|
|
||||||
|
|
||||||
llama_backend_init(false);
|
|
||||||
|
|
||||||
// load the vocab
|
|
||||||
{
|
|
||||||
auto lparams = llama_context_default_params();
|
|
||||||
|
|
||||||
lparams.vocab_only = true;
|
|
||||||
|
|
||||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
|
||||||
|
|
||||||
if (model == NULL) {
|
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
ctx = llama_new_context_with_model(model, lparams);
|
|
||||||
|
|
||||||
if (ctx == NULL) {
|
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_BPE);
|
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
|
||||||
|
|
||||||
for (int i = 0; i < n_vocab; ++i) {
|
|
||||||
std::string forward = llama_token_to_piece(ctx, i);
|
|
||||||
std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false);
|
|
||||||
if (tokens.size() == 1) {
|
|
||||||
if (i != tokens[0]) {
|
|
||||||
std::string backward = llama_token_to_piece(ctx, tokens[0]);
|
|
||||||
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
|
|
||||||
__func__, i, llama_token_to_piece(ctx, i).c_str(), tokens[0], backward.c_str());
|
|
||||||
return 2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
std::wstring_convert<typename std::codecvt_utf8<char16_t>, char16_t> u16converter;
|
|
||||||
for (char16_t ch = 0x0000; ch < 0xffff; ++ch) {
|
|
||||||
std::u16string u16str(1, ch);
|
|
||||||
std::string str = u16converter.to_bytes(u16str);
|
|
||||||
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
|
|
||||||
if (tokens.size() == 1) {
|
|
||||||
fprintf(stderr, "%s : info: %s tokenized to %d \n",
|
|
||||||
__func__, str.c_str(), tokens[0]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::wstring_convert<typename std::codecvt_utf8<char32_t>, char32_t> u32converter;
|
|
||||||
for (char32_t ch = 0x0000; ch < 0x0010ffff; ++ch) {
|
|
||||||
std::u32string u32str(1, ch);
|
|
||||||
std::string str = u32converter.to_bytes(u32str);
|
|
||||||
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
|
|
||||||
if (tokens.size() == 1) {
|
|
||||||
fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
llama_free_model(model);
|
|
||||||
llama_free(ctx);
|
|
||||||
|
|
||||||
llama_backend_free();
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
Loading…
Reference in New Issue
Block a user