mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 11:40:17 +00:00
delete minicpmv-wrapper in pr
This commit is contained in:
parent
107e1edb20
commit
72b962925b
5
Makefile
5
Makefile
@ -950,12 +950,11 @@ llama-llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/lla
|
|||||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp examples/llava/minicpmv-wrapper.h examples/llava/minicpmv-wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||||
$(CXX) $(CXXFLAGS) -c examples/llava/minicpmv-wrapper.cpp -o $(call GET_OBJ_FILE, examples/llava/minicpmv-wrapper.cpp)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp $^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp examples/llava/minicpmv-wrapper.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(call GET_OBJ_FILE, examples/llava/minicpmv-wrapper.cpp) -o $@ $(LDFLAGS)
|
|
||||||
|
|
||||||
llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
|
@ -43,8 +43,3 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli)
|
|||||||
install(TARGETS ${TARGET} RUNTIME)
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
|
||||||
add_library(minicpmv-wrapper OBJECT
|
|
||||||
minicpmv-wrapper.cpp
|
|
||||||
)
|
|
||||||
target_link_libraries(minicpmv-wrapper PRIVATE llava ${CMAKE_THREAD_LIBS_INIT})
|
|
||||||
|
@ -3,7 +3,6 @@
|
|||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "clip.h"
|
#include "clip.h"
|
||||||
#include "llava.h"
|
#include "llava.h"
|
||||||
#include "minicpmv-wrapper.h"
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
@ -14,6 +13,12 @@ struct uhd_image_embed {
|
|||||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llava_context {
|
||||||
|
struct clip_ctx * ctx_clip = NULL;
|
||||||
|
struct llama_context * ctx_llama = NULL;
|
||||||
|
struct llama_model * model = NULL;
|
||||||
|
};
|
||||||
|
|
||||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
@ -25,7 +30,147 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
|
|||||||
LOG_TEE("%s", text);
|
LOG_TEE("%s", text);
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct minicpmv_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
struct llama_model * llava_init(gpt_params * params) {
|
||||||
|
llama_backend_init();
|
||||||
|
llama_numa_init(params->numa);
|
||||||
|
|
||||||
|
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||||
|
|
||||||
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||||
|
if (model == NULL) {
|
||||||
|
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
return model;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||||
|
auto prompt = params->prompt;
|
||||||
|
if (prompt.empty()) {
|
||||||
|
prompt = "describe the image in detail.";
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||||
|
if (params->n_ctx < 2048) {
|
||||||
|
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||||
|
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||||
|
ctx_params.n_ctx = 2048;
|
||||||
|
} else {
|
||||||
|
ctx_params.n_ctx = params->n_ctx;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
|
if (ctx_llama == NULL) {
|
||||||
|
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||||
|
|
||||||
|
ctx_llava->ctx_llama = ctx_llama;
|
||||||
|
ctx_llava->model = model;
|
||||||
|
return ctx_llava;
|
||||||
|
}
|
||||||
|
|
||||||
|
void llava_free(struct llava_context * ctx_llava) {
|
||||||
|
llama_free(ctx_llava->ctx_llama);
|
||||||
|
llama_free_model(ctx_llava->model);
|
||||||
|
llama_backend_free();
|
||||||
|
}
|
||||||
|
|
||||||
|
struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||||
|
const char * clip_path = params->mmproj.c_str();
|
||||||
|
|
||||||
|
auto prompt = params->prompt;
|
||||||
|
if (prompt.empty()) {
|
||||||
|
prompt = "describe the image in detail.";
|
||||||
|
}
|
||||||
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||||
|
return ctx_clip;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){
|
||||||
|
auto ctx_clip = clip_init_context(params);
|
||||||
|
auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str());
|
||||||
|
if (ctx_clip) {
|
||||||
|
clip_free(ctx_clip);
|
||||||
|
ctx_clip = NULL;
|
||||||
|
}
|
||||||
|
return image_embed_and_slices;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||||
|
int N = (int) tokens.size();
|
||||||
|
for (int i = 0; i < N; i += n_batch) {
|
||||||
|
int n_eval = (int) tokens.size() - i;
|
||||||
|
if (n_eval > n_batch) {
|
||||||
|
n_eval = n_batch;
|
||||||
|
}
|
||||||
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
*n_past += n_eval;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||||
|
std::vector<llama_token> tokens;
|
||||||
|
tokens.push_back(id);
|
||||||
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||||
|
std::string str2 = str;
|
||||||
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||||
|
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
void process_image(struct llava_context * ctx_llava, struct uhd_image_embed * image_embed_slices, gpt_params * params, int &n_past) {
|
||||||
|
std::string system_prompt;
|
||||||
|
|
||||||
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||||
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[0][0], params->n_batch, &n_past);
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
if (image_embed_slices->image_embeds.size() > 1) {
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
for (size_t i = 1; i < image_embed_slices->image_embeds.size(); ++i) {
|
||||||
|
for (size_t j = 0; j < image_embed_slices->image_embeds[i].size(); ++j) {
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[i][j], params->n_batch, &n_past);
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
if (j == image_embed_slices->image_embeds[i].size() - 1) {
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||||
|
struct llama_context * ctx_llama,
|
||||||
|
int * n_past) {
|
||||||
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||||
|
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||||
|
static std::string ret;
|
||||||
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||||
|
ret = "</s>";
|
||||||
|
} else {
|
||||||
|
ret = llama_token_to_piece(ctx_llama, id);
|
||||||
|
}
|
||||||
|
eval_id(ctx_llama, id, n_past);
|
||||||
|
return ret.c_str();
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||||
auto embeds = minicpmv_image_embed(params, fname);
|
auto embeds = minicpmv_image_embed(params, fname);
|
||||||
auto image_embed_slices = embeds->image_embeds;
|
auto image_embed_slices = embeds->image_embeds;
|
||||||
if (!image_embed_slices[0][0]) {
|
if (!image_embed_slices[0][0]) {
|
||||||
@ -61,7 +206,7 @@ static struct minicpmv_context * minicpmv_init(gpt_params * params, const std::s
|
|||||||
return ctx_llava;
|
return ctx_llava;
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_sampling_context * llama_init(struct minicpmv_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||||
std::string user_prompt = prompt;
|
std::string user_prompt = prompt;
|
||||||
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
||||||
|
|
||||||
|
@ -1,153 +0,0 @@
|
|||||||
#include "ggml.h"
|
|
||||||
#include "common.h"
|
|
||||||
#include "clip.h"
|
|
||||||
#include "llava.h"
|
|
||||||
#include "minicpmv-wrapper.h"
|
|
||||||
#include "llama.h"
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstdlib>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
struct uhd_image_embed {
|
|
||||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct llama_model * llava_init(gpt_params * params) {
|
|
||||||
llama_backend_init();
|
|
||||||
llama_numa_init(params->numa);
|
|
||||||
|
|
||||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
|
||||||
if (model == NULL) {
|
|
||||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
return model;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct minicpmv_context * llava_init_context(gpt_params * params, llama_model * model) {
|
|
||||||
auto prompt = params->prompt;
|
|
||||||
if (prompt.empty()) {
|
|
||||||
prompt = "describe the image in detail.";
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
|
||||||
if (params->n_ctx < 2048) {
|
|
||||||
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
|
||||||
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
|
||||||
ctx_params.n_ctx = 2048;
|
|
||||||
} else {
|
|
||||||
ctx_params.n_ctx = params->n_ctx;
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
||||||
|
|
||||||
if (ctx_llama == NULL) {
|
|
||||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto ctx_llava = (struct minicpmv_context *)malloc(sizeof(minicpmv_context));
|
|
||||||
|
|
||||||
ctx_llava->ctx_llama = ctx_llama;
|
|
||||||
ctx_llava->model = model;
|
|
||||||
return ctx_llava;
|
|
||||||
}
|
|
||||||
|
|
||||||
void llava_free(struct minicpmv_context * ctx_llava) {
|
|
||||||
llama_free(ctx_llava->ctx_llama);
|
|
||||||
llama_free_model(ctx_llava->model);
|
|
||||||
llama_backend_free();
|
|
||||||
}
|
|
||||||
|
|
||||||
struct clip_ctx * clip_init_context(gpt_params * params) {
|
|
||||||
const char * clip_path = params->mmproj.c_str();
|
|
||||||
|
|
||||||
auto prompt = params->prompt;
|
|
||||||
if (prompt.empty()) {
|
|
||||||
prompt = "describe the image in detail.";
|
|
||||||
}
|
|
||||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
|
||||||
return ctx_clip;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){
|
|
||||||
auto ctx_clip = clip_init_context(params);
|
|
||||||
auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str());
|
|
||||||
if (ctx_clip) {
|
|
||||||
clip_free(ctx_clip);
|
|
||||||
ctx_clip = NULL;
|
|
||||||
}
|
|
||||||
return image_embed_and_slices;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
||||||
int N = (int) tokens.size();
|
|
||||||
for (int i = 0; i < N; i += n_batch) {
|
|
||||||
int n_eval = (int) tokens.size() - i;
|
|
||||||
if (n_eval > n_batch) {
|
|
||||||
n_eval = n_batch;
|
|
||||||
}
|
|
||||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
||||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
*n_past += n_eval;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
||||||
std::vector<llama_token> tokens;
|
|
||||||
tokens.push_back(id);
|
|
||||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
||||||
std::string str2 = str;
|
|
||||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
|
||||||
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
||||||
}
|
|
||||||
|
|
||||||
void process_image(struct minicpmv_context * ctx_llava, struct uhd_image_embed * image_embed_slices, gpt_params * params, int &n_past) {
|
|
||||||
std::string system_prompt;
|
|
||||||
|
|
||||||
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
|
||||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
||||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[0][0], params->n_batch, &n_past);
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
if (image_embed_slices->image_embeds.size() > 1) {
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
for (size_t i = 1; i < image_embed_slices->image_embeds.size(); ++i) {
|
|
||||||
for (size_t j = 0; j < image_embed_slices->image_embeds[i].size(); ++j) {
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices->image_embeds[i][j], params->n_batch, &n_past);
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
if (j == image_embed_slices->image_embeds[i].size() - 1) {
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
|
||||||
|
|
||||||
}
|
|
||||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
||||||
}
|
|
||||||
|
|
||||||
const char * sample(struct llama_sampling_context * ctx_sampling,
|
|
||||||
struct llama_context * ctx_llama,
|
|
||||||
int * n_past) {
|
|
||||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
|
||||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
|
||||||
static std::string ret;
|
|
||||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
|
||||||
ret = "</s>";
|
|
||||||
} else {
|
|
||||||
ret = llama_token_to_piece(ctx_llama, id);
|
|
||||||
}
|
|
||||||
eval_id(ctx_llama, id, n_past);
|
|
||||||
return ret.c_str();
|
|
||||||
}
|
|
@ -1,49 +0,0 @@
|
|||||||
#ifndef MINICPMV_H
|
|
||||||
#define MINICPMV_H
|
|
||||||
|
|
||||||
#include "common.h"
|
|
||||||
#include "clip.h"
|
|
||||||
#include "llava.h"
|
|
||||||
#include "llama.h"
|
|
||||||
|
|
||||||
#ifdef LLAMA_SHARED
|
|
||||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
||||||
# ifdef LLAMA_BUILD
|
|
||||||
# define MINICPMV_API __declspec(dllexport)
|
|
||||||
# else
|
|
||||||
# define MINICPMV_API __declspec(dllimport)
|
|
||||||
# endif
|
|
||||||
# else
|
|
||||||
# define MINICPMV_API __attribute__ ((visibility ("default")))
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
# define MINICPMV_API
|
|
||||||
#endif
|
|
||||||
|
|
||||||
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past);
|
|
||||||
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past);
|
|
||||||
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos);
|
|
||||||
void process_image(struct minicpmv_context * ctx_llava, struct uhd_image_embed * image_embed_slices, gpt_params * params, int &n_past);
|
|
||||||
const char * sample(struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_llama, int * n_past);
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
extern "C" {
|
|
||||||
#endif
|
|
||||||
|
|
||||||
struct minicpmv_context {
|
|
||||||
struct llama_context * ctx_llama = NULL;
|
|
||||||
struct llama_model * model = NULL;
|
|
||||||
};
|
|
||||||
|
|
||||||
MINICPMV_API struct llama_model * llava_init(gpt_params * params);
|
|
||||||
MINICPMV_API struct minicpmv_context * llava_init_context(gpt_params * params, llama_model * model);
|
|
||||||
MINICPMV_API void llava_free(struct minicpmv_context * ctx_llava);
|
|
||||||
|
|
||||||
MINICPMV_API struct clip_ctx * clip_init_context(gpt_params * params);
|
|
||||||
MINICPMV_API struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname);
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
Loading…
Reference in New Issue
Block a user