Merge commit '81bc9214a389362010f7a57f4cbc30e5f83a2d28' into nomic-vulkan

This commit is contained in:
Jared Van Bortel 2023-12-13 17:25:15 -05:00
commit 747e1eafcf
61 changed files with 3432 additions and 591 deletions

View File

@ -13,6 +13,8 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@" ./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./main "$@" ./main "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..." echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do for i in `ls $1/$2/ggml-model-f16.bin*`; do
@ -34,6 +36,8 @@ else
echo " ex: --outtype f16 \"/models/7B/\" " echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml" echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2" echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize" echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B" echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server" echo " --server (-s): Run a model on the server"

View File

@ -498,6 +498,17 @@ jobs:
path: | path: |
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
ios-xcode-build:
runs-on: macos-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
# freeBSD-latest: # freeBSD-latest:
# runs-on: macos-12 # runs-on: macos-12
# steps: # steps:

26
.gitignore vendored
View File

@ -47,6 +47,7 @@ models-mnt
/libllama.so /libllama.so
/llama-bench /llama-bench
/llava-cli /llava-cli
/lookahead
/main /main
/metal /metal
/perplexity /perplexity
@ -87,15 +88,16 @@ poetry.lock
poetry.toml poetry.toml
# Test binaries # Test binaries
tests/test-grammar-parser /tests/test-grammar-parser
tests/test-llama-grammar /tests/test-llama-grammar
tests/test-double-float /tests/test-double-float
tests/test-grad0 /tests/test-grad0
tests/test-opt /tests/test-opt
tests/test-quantize-fns /tests/test-quantize-fns
tests/test-quantize-perf /tests/test-quantize-perf
tests/test-sampling /tests/test-sampling
tests/test-tokenizer-0-llama /tests/test-tokenizer-0-llama
tests/test-tokenizer-0-falcon /tests/test-tokenizer-0-falcon
tests/test-tokenizer-1-llama /tests/test-tokenizer-1-llama
tests/test-tokenizer-1-bpe /tests/test-tokenizer-1-bpe
/tests/test-rope

View File

@ -43,6 +43,7 @@ else()
endif() endif()
# general # general
option(BUILD_SHARED_LIBS "build shared libraries" OFF)
option(LLAMA_STATIC "llama: static link libraries" OFF) option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" ON) option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
option(LLAMA_LTO "llama: enable link time optimization" OFF) option(LLAMA_LTO "llama: enable link time optimization" OFF)
@ -101,6 +102,9 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALO
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON) option(LLAMA_BUILD_SERVER "llama: build server example" ON)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
# #
# Compile flags # Compile flags
# #
@ -113,6 +117,11 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED) find_package(Threads REQUIRED)
include(CheckCXXCompilerFlag) include(CheckCXXCompilerFlag)
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
endif()
if (NOT MSVC) if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD) if (LLAMA_SANITIZE_THREAD)
add_compile_options(-fsanitize=thread) add_compile_options(-fsanitize=thread)
@ -162,7 +171,7 @@ if (LLAMA_METAL)
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/") #add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory # copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY) configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY} ${FOUNDATION_LIBRARY}

View File

@ -2,13 +2,13 @@
BUILD_TARGETS = \ BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \ simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora tests/test-c.o speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = \ TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \ tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \ tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope
# Code coverage output files # Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -30,7 +30,7 @@ ifeq '' '$(findstring clang,$(shell $(CC) --version))'
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }') CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
else else
CC_IS_CLANG=1 CC_IS_CLANG=1
ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))' ifeq '' '$(findstring Apple,$(shell $(CC) --version))'
CC_IS_LLVM_CLANG=1 CC_IS_LLVM_CLANG=1
else else
CC_IS_APPLE_CLANG=1 CC_IS_APPLE_CLANG=1
@ -174,6 +174,10 @@ ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g MK_CXXFLAGS += -O0 -g
MK_LDFLAGS += -g MK_LDFLAGS += -g
ifeq ($(UNAME_S),Linux)
MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS
endif
else else
MK_CPPFLAGS += -DNDEBUG MK_CPPFLAGS += -DNDEBUG
endif endif
@ -648,7 +652,7 @@ beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
@ -657,6 +661,9 @@ speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS)
parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifdef LLAMA_METAL ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS) metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
@ -698,28 +705,28 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS) tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-opt: tests/test-opt.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
@ -734,5 +741,8 @@ tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMM
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h tests/test-c.o: tests/test-c.c llama.h
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@ $(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@

View File

@ -2,33 +2,14 @@
import PackageDescription import PackageDescription
#if arch(arm) || arch(arm64) let package = Package(
let platforms: [SupportedPlatform]? = [ name: "llama",
platforms: [
.macOS(.v12), .macOS(.v12),
.iOS(.v14), .iOS(.v14),
.watchOS(.v4), .watchOS(.v4),
.tvOS(.v14) .tvOS(.v14)
] ],
let exclude: [String] = []
let resources: [Resource] = [
.process("ggml-metal.metal")
]
let additionalSources: [String] = ["ggml-metal.m"]
let additionalSettings: [CSetting] = [
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
]
#else
let platforms: [SupportedPlatform]? = nil
let exclude: [String] = ["ggml-metal.metal"]
let resources: [Resource] = []
let additionalSources: [String] = []
let additionalSettings: [CSetting] = []
#endif
let package = Package(
name: "llama",
platforms: platforms,
products: [ products: [
.library(name: "llama", targets: ["llama"]), .library(name: "llama", targets: ["llama"]),
], ],
@ -36,25 +17,30 @@ let package = Package(
.target( .target(
name: "llama", name: "llama",
path: ".", path: ".",
exclude: exclude, exclude: [],
sources: [ sources: [
"ggml.c", "ggml.c",
"llama.cpp", "llama.cpp",
"ggml-alloc.c", "ggml-alloc.c",
"ggml-backend.c", "ggml-backend.c",
"ggml-quants.c", "ggml-quants.c",
] + additionalSources, "ggml-metal.m",
resources: resources, ],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers", publicHeadersPath: "spm-headers",
cSettings: [ cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]), .unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE") .define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL"),
// NOTE: NEW_LAPACK will required iOS version 16.4+ // NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14 // We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc) // (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"), // .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64") // .define("ACCELERATE_LAPACK_ILP64")
] + additionalSettings, ],
linkerSettings: [ linkerSettings: [
.linkedFramework("Accelerate") .linkedFramework("Accelerate")
] ]

View File

@ -10,6 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167 - Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
---- ----
@ -114,6 +116,8 @@ as the main playground for developing new features for the [ggml](https://github
- [nat/openplayground](https://github.com/nat/openplayground) - [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [withcatai/catai](https://github.com/withcatai/catai) - [withcatai/catai](https://github.com/withcatai/catai)
- [semperai/amica](https://github.com/semperai/amica)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
--- ---
@ -320,7 +324,7 @@ mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
### BLAS Build ### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it: Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
- #### Accelerate Framework: - #### Accelerate Framework:
@ -422,8 +426,9 @@ Building the program with BLAS support may lead to some performance improvements
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build . cmake --build .
``` ```
- Using `CMake` for Windows: - Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
```bash ```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build mkdir build
cd build cd build
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ .. cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
@ -891,7 +896,7 @@ Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`) - `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`) - `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the Gitlab Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now). The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
#### Usage #### Usage

View File

@ -11,8 +11,13 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
if(NOT IS_DIRECTORY "${GIT_DIR}") if(NOT IS_DIRECTORY "${GIT_DIR}")
file(READ ${GIT_DIR} REAL_GIT_DIR_LINK) file(READ ${GIT_DIR} REAL_GIT_DIR_LINK)
string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK}) string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK})
string(FIND "${REAL_GIT_DIR}" "/" SLASH_POS)
if (SLASH_POS EQUAL 0)
set(GIT_DIR "${REAL_GIT_DIR}")
else()
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}") set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
endif() endif()
endif()
set(GIT_INDEX "${GIT_DIR}/index") set(GIT_INDEX "${GIT_DIR}/index")
else() else()
@ -26,7 +31,7 @@ add_custom_command(
COMMENT "Generating build details from Git" COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION} COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME} -DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/build-info.cmake" -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/gen-build-info-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.." WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX} DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM VERBATIM

View File

@ -280,6 +280,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.yarn_beta_slow = std::stof(argv[i]); params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--memory-f32") { } else if (arg == "--memory-f32") {
params.memory_f16 = false; params.memory_f16 = false;
} else if (arg == "--samplers") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.samplers_sequence = parse_samplers_input(argv[i]);
} else if (arg == "--sampling-seq") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.samplers_sequence = argv[i];
} else if (arg == "--top-p") { } else if (arg == "--top-p") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -678,6 +690,47 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
std::istreambuf_iterator<char>(), std::istreambuf_iterator<char>(),
std::back_inserter(sparams.grammar) std::back_inserter(sparams.grammar)
); );
} else if (arg == "--override-kv") {
if (++i >= argc) {
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters // Parse args for logging parameters
} else if ( log_param_single_parse( argv[i] ) ) { } else if ( log_param_single_parse( argv[i] ) ) {
@ -721,6 +774,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
} }
} }
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.back().key[0] = 0;
}
return true; return true;
} }
@ -761,6 +819,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p); printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
@ -850,6 +910,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str()); printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
printf(" -ld LOGDIR, --logdir LOGDIR\n"); printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n"); printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf("\n"); printf("\n");
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_print_usage(); log_print_usage();
@ -886,6 +949,48 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
GGML_UNREACHABLE(); GGML_UNREACHABLE();
} }
//
// String parsing
//
std::string parse_samplers_input(std::string input) {
std::string output = "";
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, char> samplers_symbols {
{"top_k", 'k'},
{"top-k", 'k'},
{"top_p", 'p'},
{"top-p", 'p'},
{"nucleus", 'p'},
{"typical_p", 'y'},
{"typical-p", 'y'},
{"typical", 'y'},
{"min_p", 'm'},
{"min-p", 'm'},
{"tfs_z", 'f'},
{"tfs-z", 'f'},
{"tfs", 'f'},
{"temp", 't'},
{"temperature",'t'}
};
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
size_t separator = input.find(';');
while (separator != input.npos) {
std::string name = input.substr(0,separator);
input = input.substr(separator+1);
separator = input.find(';');
if (samplers_symbols.find(name) != samplers_symbols.end()) {
output += samplers_symbols[name];
}
}
if (samplers_symbols.find(input) != samplers_symbols.end()) {
output += samplers_symbols[input];
}
return output;
}
// //
// Model utils // Model utils
// //
@ -900,6 +1005,12 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.tensor_split = params.tensor_split; mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
mparams.kv_overrides = params.kv_overrides.data();
}
return mparams; return mparams;
} }

View File

@ -86,6 +86,8 @@ struct gpt_params {
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files std::string logdir = ""; // directory in which to save YAML log files
std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct // TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter std::string lora_base = ""; // base model path for the lora adapter
@ -141,6 +143,12 @@ std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input); void process_escapes(std::string& input);
//
// String parsing
//
std::string parse_samplers_input(std::string input);
// //
// Model utils // Model utils
// //

View File

@ -190,7 +190,7 @@ namespace grammar_parser {
pos = parse_space(pos + 1, is_nested); pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator } else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) { if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos); throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
} }
// apply transformation to previous symbol (last_sym_start to end) according to // apply transformation to previous symbol (last_sym_start to end) according to

View File

@ -99,6 +99,56 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
return std::string(result); return std::string(result);
} }
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto s : params.samplers_sequence) {
switch (s) {
case 'k': result += "-> top_k "; break;
case 'f': result += "-> tfs_z "; break;
case 'y': result += "-> typical_p "; break;
case 'p': result += "-> top_p "; break;
case 'm': result += "-> min_p "; break;
case 't': result += "-> temp "; break;
default : break;
}
}
} else {
result += "-> mirostat ";
}
return result;
}
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t & min_keep) {
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::string & samplers_sequence = params.samplers_sequence;
for (auto s : samplers_sequence) {
switch (s){
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
default : break;
}
}
}
llama_token llama_sampling_sample( llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling, struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main, struct llama_context * ctx_main,
@ -109,11 +159,6 @@ llama_token llama_sampling_sample(
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main)); const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp; const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n; const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat; const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq; const float penalty_freq = params.penalty_freq;
@ -188,12 +233,7 @@ llama_token llama_sampling_sample(
// temperature sampling // temperature sampling
size_t min_keep = std::max(1, params.n_probs); size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); sampler_queue(ctx_main, params, cur_p, min_keep);
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep);
llama_sample_temp (ctx_main, &cur_p, temp);
id = llama_sample_token(ctx_main, &cur_p); id = llama_sample_token(ctx_main, &cur_p);

View File

@ -26,6 +26,7 @@ typedef struct llama_sampling_params {
float mirostat_tau = 5.00f; // target entropy float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token bool penalize_nl = true; // consider newlines as a repeatable token
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
std::string grammar; // optional BNF-like grammar to constrain sampling std::string grammar; // optional BNF-like grammar to constrain sampling
@ -80,6 +81,9 @@ std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama
// Print sampling parameters into a string // Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params); std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
// this is a common sampling function used across the examples for convenience // this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function // it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call // Note: When using multiple sequences, it is the caller's responsibility to call

View File

@ -10,7 +10,7 @@ import re
import sys import sys
from enum import IntEnum from enum import IntEnum
from pathlib import Path from pathlib import Path
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
import numpy as np import numpy as np
import torch import torch
@ -59,7 +59,7 @@ class Model:
from safetensors import safe_open from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
else: else:
ctx = contextlib.nullcontext(torch.load(self.dir_model / part_name, map_location="cpu")) ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
with ctx as model_part: with ctx as model_part:
for name in model_part.keys(): for name in model_part.keys():
@ -168,6 +168,8 @@ class Model:
return PersimmonModel return PersimmonModel
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"): if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
return Model return Model
def _is_model_safetensors(self) -> bool: def _is_model_safetensors(self) -> bool:
@ -203,6 +205,8 @@ class Model:
return gguf.MODEL_ARCH.PERSIMMON return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"): if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
raise NotImplementedError(f'Architecture "{arch}" not supported!') raise NotImplementedError(f'Architecture "{arch}" not supported!')
@ -832,6 +836,131 @@ class StableLMModel(Model):
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5) self.gguf_writer.add_layer_norm_eps(1e-5)
class QwenModel(Model):
@staticmethod
def token_bytes_to_string(b):
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
byte_encoder = bytes_to_unicode()
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
@staticmethod
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
return parts
def set_vocab(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[self.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
assert len(merged) == 2
merges.append(' '.join(map(self.token_bytes_to_string, merged)))
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
added_vocab = tokenizer.special_tokens
for i in range(vocab_size):
if i not in reverse_vocab:
pad_token = f"[PAD{i}]".encode("utf-8")
tokens.append(bytearray(pad_token))
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
special_vocab.merges = merges
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
self.gguf_writer.add_name("Qwen")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
def write_tensors(self):
block_count = self.hparams["num_hidden_layers"]
model_kv = dict(self.get_tensors())
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in model_kv.items():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######
@ -880,6 +1009,7 @@ print(f"Loading model: {dir_model.name}")
hparams = Model.load_hparams(dir_model) hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0]) model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian) model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)

2
convert.py Normal file → Executable file
View File

@ -267,7 +267,7 @@ class Params:
n_ctx = 2048 n_ctx = 2048
return Params( return Params(
n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]), n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"], n_embd = config["dim"],
n_layer = config["n_layers"], n_layer = config["n_layers"],
n_ctx = n_ctx, n_ctx = n_ctx,

View File

@ -32,6 +32,7 @@ else()
add_subdirectory(save-load-state) add_subdirectory(save-load-state)
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(speculative) add_subdirectory(speculative)
add_subdirectory(lookahead)
add_subdirectory(train-text-from-scratch) add_subdirectory(train-text-from-scratch)
if (LLAMA_METAL) if (LLAMA_METAL)
add_subdirectory(metal) add_subdirectory(metal)

View File

@ -155,7 +155,7 @@ int main(int argc, char ** argv) {
} }
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq); LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View File

@ -1,4 +1,4 @@
This is a swift clone of `examples/batched`. This is a swift clone of `examples/batched`.
$ `make` $ `make`
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]` $ `./batched_swift MODEL_PATH [PROMPT] [PARALLEL]`

View File

@ -153,7 +153,7 @@ while n_cur <= n_len {
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished // is it an end of stream? -> mark the stream as finished
if new_token_id == llama_token_eos(context) || n_cur == n_len { if new_token_id == llama_token_eos(model) || n_cur == n_len {
i_batch[i] = -1 i_batch[i] = -1
// print("") // print("")
if n_parallel > 1 { if n_parallel > 1 {
@ -215,9 +215,10 @@ print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end
llama_print_timings(context) llama_print_timings(context)
private func tokenize(text: String, add_bos: Bool) -> [llama_token] { private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let n_tokens = text.count + (add_bos ? 1 : 0) let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false) let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
var swiftTokens: [llama_token] = [] var swiftTokens: [llama_token] = []
for i in 0 ..< tokenCount { for i in 0 ..< tokenCount {
swiftTokens.append(tokens[Int(i)]) swiftTokens.append(tokens[Int(i)])
@ -230,18 +231,15 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
var result = [CChar](repeating: 0, count: 8) var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count)) let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
if nTokens < 0 { if nTokens < 0 {
if result.count >= -Int(nTokens) { let actualTokensCount = -Int(nTokens)
result.removeLast(-Int(nTokens)) result = .init(repeating: 0, count: actualTokensCount)
} else {
result.removeAll()
}
let check = llama_token_to_piece( let check = llama_token_to_piece(
model, model,
token, token,
&result, &result,
Int32(result.count) Int32(result.count)
) )
assert(check == nTokens) assert(check == actualTokensCount)
} else { } else {
result.removeLast(result.count - Int(nTokens)) result.removeLast(result.count - Int(nTokens))
} }
@ -259,5 +257,4 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
buffer = [] buffer = []
return bufferString return bufferString
} }
return nil
} }

1
examples/llama.swiftui/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
xcuserdata

View File

@ -0,0 +1,7 @@
# llama.swiftui
Local inference of llama.cpp on an iPhone.
So far I only tested with starcoder 1B model, but it can most likely handle 7B models as well.
https://github.com/bachittle/llama.cpp/assets/39804642/e290827a-4edb-4093-9642-2a5e399ec545

View File

@ -0,0 +1,208 @@
import Foundation
// import llama
enum LlamaError: Error {
case couldNotInitializeContext
}
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]
/// This variable is used to store temporarily invalid cchars
private var temporary_invalid_cchars: [CChar]
var n_len: Int32 = 512
var n_cur: Int32 = 0
var n_decode: Int32 = 0
init(model: OpaquePointer, context: OpaquePointer) {
self.model = model
self.context = context
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
self.temporary_invalid_cchars = []
}
deinit {
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
static func createContext(path: String) throws -> LlamaContext {
llama_backend_init(false)
let model_params = llama_model_default_params()
let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
}
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = 8
ctx_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
print("Could not load context!")
throw LlamaError.couldNotInitializeContext
}
return LlamaContext(model: model, context: context)
}
func get_n_tokens() -> Int32 {
return batch.n_tokens;
}
func completion_init(text: String) {
print("attempting to complete \"\(text)\"")
tokens_list = tokenize(text: text, add_bos: true)
temporary_invalid_cchars = []
let n_ctx = llama_n_ctx(context)
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
if n_kv_req > n_ctx {
print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
}
for id in tokens_list {
print(String(cString: token_to_piece(token: id) + [0]))
}
// batch = llama_batch_init(512, 0) // done in init()
batch.n_tokens = Int32(tokens_list.count)
for i1 in 0..<batch.n_tokens {
let i = Int(i1)
batch.token[i] = tokens_list[i]
batch.pos[i] = i1
batch.n_seq_id[Int(i)] = 1
batch.seq_id[Int(i)]![0] = 0
batch.logits[i] = 0
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
}
n_cur = batch.n_tokens
}
func completion_loop() -> String {
var new_token_id: llama_token = 0
let n_vocab = llama_n_vocab(model)
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
var candidates = Array<llama_token_data>()
candidates.reserveCapacity(Int(n_vocab))
for token_id in 0..<n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
candidates.withUnsafeMutableBufferPointer() { buffer in
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
if new_token_id == llama_token_eos(context) || n_cur == n_len {
print("\n")
let new_token_str = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()
return new_token_str
}
let new_token_cchars = token_to_piece(token: new_token_id)
temporary_invalid_cchars.append(contentsOf: new_token_cchars)
let new_token_str: String
if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
temporary_invalid_cchars.removeAll()
new_token_str = string
} else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
// in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
let string = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()
new_token_str = string
} else {
new_token_str = ""
}
print(new_token_str)
// tokens_list.append(new_token_id)
batch.n_tokens = 0
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
batch.seq_id[Int(batch.n_tokens)]![0] = 0
batch.logits[Int(batch.n_tokens)] = 1 // true
batch.n_tokens += 1
n_decode += 1
n_cur += 1
if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
}
return new_token_str
}
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
var swiftTokens: [llama_token] = []
for i in 0..<tokenCount {
swiftTokens.append(tokens[Int(i)])
}
tokens.deallocate()
return swiftTokens
}
/// - note: The result does not contain null-terminator
private func token_to_piece(token: llama_token) -> [CChar] {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
result.initialize(repeating: Int8(0), count: 8)
defer {
result.deallocate()
}
let nTokens = llama_token_to_piece(model, token, result, 8)
if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
defer {
newResult.deallocate()
}
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer)
} else {
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
return Array(bufferPointer)
}
}
}

View File

@ -0,0 +1,5 @@
//
// Use this file to import your target's public headers that you would like to expose to Swift.
//
#import "llama.h"

View File

@ -0,0 +1,481 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 56;
objects = {
/* Begin PBXBuildFile section */
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; };
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; };
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; };
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 549479C52AC9E0F200E0F78B /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-fno-objc-arc -DGGML_SWIFT -DGGML_USE_METAL -O3"; }; };
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */; };
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
542376062B0D9BEA008E6A1C /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../ggml-quants.h"; sourceTree = "<group>"; };
542376072B0D9BFB008E6A1C /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../ggml-quants.c"; sourceTree = "<group>"; };
542376092B0D9C40008E6A1C /* ggml-backend.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../ggml-backend.h"; sourceTree = "<group>"; };
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../ggml-backend.c"; sourceTree = "<group>"; };
542EA09B2AC8723900A8AEE9 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../ggml.c; sourceTree = "<group>"; };
542EA09C2AC8723900A8AEE9 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../ggml.h; sourceTree = "<group>"; };
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../ggml-alloc.h"; sourceTree = "<group>"; };
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../ggml-alloc.c"; sourceTree = "<group>"; };
542EA0A12AC8729100A8AEE9 /* llama.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = llama.cpp; path = ../../llama.cpp; sourceTree = "<group>"; };
542EA0A22AC8729100A8AEE9 /* llama.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = llama.h; path = ../../llama.h; sourceTree = "<group>"; };
549479C52AC9E0F200E0F78B /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../ggml-metal.m"; sourceTree = "<group>"; };
549479C62AC9E0F200E0F78B /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../ggml-metal.h"; sourceTree = "<group>"; };
549479C82AC9E10B00E0F78B /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../ggml-metal.metal"; sourceTree = "<group>"; };
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "bridging-header.h"; sourceTree = "<group>"; };
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */ = {isa = PBXFileReference; lastKnownFileType = file; path = "llama-2-7b-chat.Q2_K.gguf"; sourceTree = "<group>"; };
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
8A1C83702AC328BD0096AF73 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
8A08D1F62AC7383900FE6CD4 /* llama.cpp */ = {
isa = PBXGroup;
children = (
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */,
542376092B0D9C40008E6A1C /* ggml-backend.h */,
542376062B0D9BEA008E6A1C /* ggml-quants.h */,
542376072B0D9BFB008E6A1C /* ggml-quants.c */,
549479C82AC9E10B00E0F78B /* ggml-metal.metal */,
549479C62AC9E0F200E0F78B /* ggml-metal.h */,
549479C52AC9E0F200E0F78B /* ggml-metal.m */,
542EA09B2AC8723900A8AEE9 /* ggml.c */,
542EA09C2AC8723900A8AEE9 /* ggml.h */,
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */,
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */,
542EA0A12AC8729100A8AEE9 /* llama.cpp */,
542EA0A22AC8729100A8AEE9 /* llama.h */,
);
name = llama.cpp;
sourceTree = "<group>";
};
8A1C836A2AC328BD0096AF73 = {
isa = PBXGroup;
children = (
8A08D1F62AC7383900FE6CD4 /* llama.cpp */,
8A907F312AC7134E006146EA /* llama.cpp.swift */,
8A3F84232AC4C891005E2EE8 /* models */,
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
8A1C83742AC328BD0096AF73 /* Products */,
8A39BE082AC7601000BFEB40 /* Frameworks */,
);
sourceTree = "<group>";
};
8A1C83742AC328BD0096AF73 /* Products */ = {
isa = PBXGroup;
children = (
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */,
);
name = Products;
sourceTree = "<group>";
};
8A1C83752AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXGroup;
children = (
8A3F84102AC4BD85005E2EE8 /* Resources */,
8A9F7C4B2AC332DC008AE1EA /* Models */,
8A9F7C4A2AC332BF008AE1EA /* UI */,
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
8A1C837C2AC328BE0096AF73 /* Preview Content */,
);
path = llama.swiftui;
sourceTree = "<group>";
};
8A1C837C2AC328BE0096AF73 /* Preview Content */ = {
isa = PBXGroup;
children = (
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */,
);
path = "Preview Content";
sourceTree = "<group>";
};
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
8A3F84102AC4BD85005E2EE8 /* Resources */ = {
isa = PBXGroup;
children = (
8A3F84112AC4BD8C005E2EE8 /* models */,
);
path = Resources;
sourceTree = "<group>";
};
8A3F84112AC4BD8C005E2EE8 /* models */ = {
isa = PBXGroup;
children = (
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */,
);
path = models;
sourceTree = "<group>";
};
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
isa = PBXGroup;
children = (
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */,
8A907F322AC7134E006146EA /* LibLlama.swift */,
);
path = llama.cpp.swift;
sourceTree = "<group>";
};
8A9F7C4A2AC332BF008AE1EA /* UI */ = {
isa = PBXGroup;
children = (
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
);
path = UI;
sourceTree = "<group>";
};
8A9F7C4B2AC332DC008AE1EA /* Models */ = {
isa = PBXGroup;
children = (
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */,
);
path = Models;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXNativeTarget section */
8A1C83722AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXNativeTarget;
buildConfigurationList = 8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */;
buildPhases = (
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
);
buildRules = (
);
dependencies = (
);
name = llama.swiftui;
packageProductDependencies = (
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
productType = "com.apple.product-type.application";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
8A1C836B2AC328BD0096AF73 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastSwiftUpdateCheck = 1500;
LastUpgradeCheck = 1500;
TargetAttributes = {
8A1C83722AC328BD0096AF73 = {
CreatedOnToolsVersion = 15.0;
LastSwiftMigration = 1500;
};
};
};
buildConfigurationList = 8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 8A1C836A2AC328BD0096AF73;
packageReferences = (
);
productRefGroup = 8A1C83742AC328BD0096AF73 /* Products */;
projectDirPath = "";
projectRoot = "";
targets = (
8A1C83722AC328BD0096AF73 /* llama.swiftui */,
);
};
/* End PBXProject section */
/* Begin PBXResourcesBuildPhase section */
8A1C83712AC328BD0096AF73 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXResourcesBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
8A1C836F2AC328BD0096AF73 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */,
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
8A1C837F2AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
};
name = Debug;
};
8A1C83802AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
};
name = Release;
};
8A1C83822AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
8A1C83832AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C837F2AC328BE0096AF73 /* Debug */,
8A1C83802AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C83822AC328BE0096AF73 /* Debug */,
8A1C83832AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:">
</FileRef>
</Workspace>

View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>IDEDidComputeMac32BitWarning</key>
<true/>
</dict>
</plist>

View File

@ -0,0 +1,11 @@
{
"colors" : [
{
"idiom" : "universal"
}
],
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@ -0,0 +1,13 @@
{
"images" : [
{
"idiom" : "universal",
"platform" : "ios",
"size" : "1024x1024"
}
],
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@ -0,0 +1,6 @@
{
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@ -0,0 +1,45 @@
import Foundation
@MainActor
class LlamaState: ObservableObject {
@Published var messageLog = ""
private var llamaContext: LlamaContext?
private var modelUrl: URL? {
Bundle.main.url(forResource: "q8_0", withExtension: "gguf", subdirectory: "models")
// Bundle.main.url(forResource: "llama-2-7b-chat", withExtension: "Q2_K.gguf", subdirectory: "models")
}
init() {
do {
try loadModel()
} catch {
messageLog += "Error!\n"
}
}
private func loadModel() throws {
messageLog += "Loading model...\n"
if let modelUrl {
llamaContext = try LlamaContext.createContext(path: modelUrl.path())
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
} else {
messageLog += "Could not locate model\n"
}
}
func complete(text: String) async {
guard let llamaContext else {
return
}
messageLog += "Attempting to complete text...\n"
await llamaContext.completion_init(text: text)
messageLog += "\(text)"
while await llamaContext.n_cur <= llamaContext.n_len {
let result = await llamaContext.completion_loop()
messageLog += "\(result)"
}
await llamaContext.clear()
messageLog += "\n\ndone\n"
}
}

View File

@ -0,0 +1,6 @@
{
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@ -0,0 +1,42 @@
import SwiftUI
struct ContentView: View {
@StateObject var llamaState = LlamaState()
@State private var multiLineText = ""
var body: some View {
VStack {
ScrollView(.vertical) {
Text(llamaState.messageLog)
}
TextEditor(text: $multiLineText)
.frame(height: 200)
.padding()
.border(Color.gray, width: 0.5)
Button(action: {
sendText()
}) {
Text("Send")
.padding()
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
}
}
.padding()
}
func sendText() {
Task {
await llamaState.complete(text: multiLineText)
multiLineText = ""
}
}
}
/*
#Preview {
ContentView()
}
*/

View File

@ -0,0 +1,10 @@
import SwiftUI
@main
struct llama_swiftuiApp: App {
var body: some Scene {
WindowGroup {
ContentView()
}
}
}

View File

@ -5,7 +5,7 @@ import json
import torch import torch
import numpy as np import numpy as np
from gguf import * from gguf import *
from transformers import CLIPModel, CLIPProcessor from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
TEXT = "clip.text" TEXT = "clip.text"
VISION = "clip.vision" VISION = "clip.vision"
@ -78,11 +78,19 @@ ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images") help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False, ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts") help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values") ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values") ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
# with proper
args = ap.parse_args() args = ap.parse_args()
@ -96,13 +104,20 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None # output in the same directory as the model if output_dir is None
dir_model = args.model_dir dir_model = args.model_dir
if args.clip_model_is_vision:
vocab = None
tokens = None
else:
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f) vocab = json.load(f)
tokens = [key for key in vocab] tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f) config = json.load(f)
if args.clip_model_is_vision:
v_hparams = config
t_hparams = None
else:
v_hparams = config["vision_config"] v_hparams = config["vision_config"]
t_hparams = config["text_config"] t_hparams = config["text_config"]
@ -117,7 +132,10 @@ ftype = 1
if args.use_f32: if args.use_f32:
ftype = 0 ftype = 0
if args.clip_model_is_vision:
model = CLIPVisionModel.from_pretrained(dir_model)
processor = None
else:
model = CLIPModel.from_pretrained(dir_model) model = CLIPModel.from_pretrained(dir_model)
processor = CLIPProcessor.from_pretrained(dir_model) processor = CLIPProcessor.from_pretrained(dir_model)
@ -128,13 +146,13 @@ has_llava_projector = False
if args.text_only: if args.text_only:
fname_middle = "text-" fname_middle = "text-"
has_vision_encoder = False has_vision_encoder = False
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
elif args.llava_projector is not None: elif args.llava_projector is not None:
fname_middle = "mmproj-" fname_middle = "mmproj-"
has_text_encoder = False has_text_encoder = False
has_llava_projector = True has_llava_projector = True
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
else: else:
fname_middle = "" fname_middle = ""
@ -182,8 +200,12 @@ if has_vision_encoder:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"] block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count) fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean if processor is not None:
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean) fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std) fout.add_array("clip.vision.image_std", image_std)

View File

@ -0,0 +1,5 @@
set(TARGET lookahead)
add_executable(${TARGET} lookahead.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -0,0 +1,7 @@
# llama.cpp/examples/lookahead
Demonstartion of lookahead decoding technique:
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
More info: https://github.com/ggerganov/llama.cpp/pull/4207

View File

@ -0,0 +1,487 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
struct ngram_data {
bool active = false;
llama_seq_id seq_id = -1;
std::vector<int> i_batch;
std::vector<llama_token> tokens;
};
// n-gram container
struct ngram_container {
ngram_container(int n_vocab, int N, int G) {
cnt.resize(n_vocab);
head.resize(n_vocab);
tokens.resize(n_vocab * G * (N - 1));
}
int n_total = 0;
std::vector<int> cnt;
std::vector<int> head;
// [n_vocab][G][N - 1]
// for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
std::vector<llama_token> tokens;
};
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
const int W = 15; // lookahead window
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("lookahead", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the target model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// Tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);
std::vector<llama_token> inp;
std::vector<llama_token> all;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
all = inp;
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
// eval the prompt
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
int n_predict = 0;
int n_accept = 0;
int n_past = inp.size();
llama_token id = 0;
// used to determine end of generation
bool has_eos = false;
// for each decoded batch, we have at most W + G + 1 distinct sequences:
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);
// tokens for the past N - 1 Jacobi iterations
std::vector<llama_token> tokens_j_prev(W);
std::vector<std::vector<llama_token>> tokens_j(N - 1);
for (int j = 0; j < N - 1; j++) {
tokens_j[j].resize(W);
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// initialize randomly from the prompt tokens
tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
} else {
// initialize with a sequence of increasing numbers
tokens_j[j][i] = 100 + i;
}
}
}
std::vector<llama_seq_id> seq_id_look;
// the input token belongs both to all sequences
std::vector<llama_seq_id> seq_id_all(W + G + 1);
for (int i = 0; i < W + G + 1; i++) {
seq_id_all[i] = i;
}
// here we keep adding new n-grams as we go
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
const auto t_dec_start = ggml_time_us();
// sample first token
{
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
llama_sampling_accept(ctx_sampling, ctx, id, true);
{
const std::string token_str = llama_token_to_piece(ctx, id);
printf("%s", token_str.c_str());
fflush(stdout);
}
}
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
//
// Example for W = 5, N = 4, G = 2:
// (I = input, L = lookahead, V = verification)
//
// Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
// Info: I L L L L L L L L L L L L L L V V V V V V
// Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
// Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
// ---------------------------------------------------------------------
// Seq: 0
// 1 1 1
// 2 2 2 2
// 3 3 3 3 3
// 4 4 4 4 4 4
// 5 5 5 5 5 5 5
// 6 6 6 6
// 7 7 7 7
// ---------------------------------------------------------------------
// | | | | | | | | | | |
// V V V V V | | | | | |
// j_tokens | | | | | |
// V V V V V V
// id
{
llama_batch_clear(batch);
// current token - first token of the first level
llama_batch_add(batch, id, n_past, seq_id_all, true);
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
{
const int g_cur = ngrams_observed.cnt[id];
ngrams_cur.resize(g_cur);
for (int g = 0; g < g_cur; g++) {
ngrams_cur[g].active = true;
ngrams_cur[g].tokens.resize(N);
ngrams_cur[g].i_batch.resize(N);
ngrams_cur[g].seq_id = W + 1 + g;
ngrams_cur[g].i_batch[0] = 0;
ngrams_cur[g].tokens [0] = id;
}
for (int j = 0; j < N - 1; j++) {
for (int g = 0; g < g_cur; g++) {
const int idx = id*(N - 1)*G + g*(N - 1);
const llama_token t = ngrams_observed.tokens[idx + j];
ngrams_cur[g].tokens [j + 1] = t;
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
}
}
}
// fill the remaining W - 1 tokens for the first level
for (int i = 1; i < W; i++) {
seq_id_look.resize(W - i);
for (int j = 0; j < W - i; j++) {
seq_id_look[j] = i + j + 1;
}
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
}
// fill the rest of the levels
for (int j = 1; j < N - 1; j++) {
for (int i = 0; i < W; i++) {
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
}
}
}
if (llama_decode(ctx, batch) != 0) {
fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
return 1;
}
int seq_id_best = 0;
for (int v = 0; v < N; ++v) {
int i_batch = 0;
// if no active ngrams are left, it means the sampled token does not pass the verification
if (v > 0) {
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
i_batch = ngrams_cur[g].i_batch[v];
seq_id_best = ngrams_cur[g].seq_id;
++n_accept;
break;
}
}
// no more matches -> create a new batch
if (i_batch == 0) {
break;
}
}
// sample the next token
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
llama_sampling_accept(ctx_sampling, ctx, id, true);
// print
{
const std::string token_str = llama_token_to_piece(ctx, id);
if (v == 0) {
printf("%s", token_str.c_str());
} else {
// print light cyan
printf("\033[0;96m%s\033[0m", token_str.c_str());
}
fflush(stdout);
if (id == llama_token_eos(model)) {
has_eos = true;
}
all.push_back(id);
}
++n_predict;
++n_past;
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// verify across active n-grams
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
if (v == N - 1) {
ngrams_cur[g].active = false;
} else {
if (id != ngrams_cur[g].tokens[v + 1]) {
ngrams_cur[g].active = false;
}
}
}
}
// print known n-grams starting with token id (debug)
if (0 && v == 0) {
if (ngrams_observed.cnt[id] > 0) {
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
}
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
printf(" - ngram %2d: ", i);
const int idx = id*(N - 1)*G + i*(N - 1);
for (int j = 0; j < N - 1; j++) {
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
printf("%s", token_str.c_str());
}
printf("\n");
}
}
// update lookahead tokens
{
for (int i = 0; i < W; i++) {
tokens_j_prev[i] = tokens_j[0][i];
}
for (int j = 0; j < N - 2; j++) {
tokens_j[j] = tokens_j[j + 1];
}
if (v == 0) {
// sample from the last level
for (int i = 0; i < W; i++) {
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
}
} else {
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// random init
tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
} else {
// init from the previous level
tokens_j[N - 2][i] = tokens_j[0][i];
}
}
}
}
// update observed ngrams
if (v == 0) {
// the first token of the n-gram is determined by the index in the container so it is not stored
std::vector<llama_token> ngram(N - 1);
// n-gram generation
// ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
for (int f = 0; f < W; ++f) {
const int ft = tokens_j_prev[f]; // first token of the n-gram
for (int j = 0; j < N - 1; ++j) {
ngram[j] = tokens_j[j][f];
}
// filter-out repeating n-grams
{
bool is_unique = true;
for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
const int idx = ft*(N - 1)*G + k*(N - 1);
bool is_match = true;
for (int j = 0; j < N - 1; ++j) {
if (ngrams_observed.tokens[idx + j] != ngram[j]) {
is_match = false;
break;
}
}
if (is_match) {
is_unique = false;
break;
}
}
if (!is_unique) {
continue;
}
}
const int head = ngrams_observed.head[ft];
const int idx = ft*(N - 1)*G + head*(N - 1);
for (int i = 0; i < N - 1; i++) {
ngrams_observed.tokens[idx + i] = ngram[i];
}
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
ngrams_observed.head[ft] = (head + 1) % G;
ngrams_observed.n_total++;
}
}
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
}
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("W = %2d\n", W);
LOG_TEE("N = %2d\n", N);
LOG_TEE("G = %2d\n", G);
LOG_TEE("\n");
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_accept = %d\n", n_accept);
llama_print_timings(ctx);
llama_kv_cache_view_free(&kvc_view);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View File

@ -104,6 +104,12 @@ static void sigint_handler(int signo) {
} }
#endif #endif
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
LOG_TEE("%s", text);
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
g_params = &params; g_params = &params;
@ -117,6 +123,7 @@ int main(int argc, char ** argv) {
log_set_target(log_filename_generator("main", "log")); log_set_target(log_filename_generator("main", "log"));
LOG_TEE("Log start\n"); LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv); log_dump_cmdline(argc, argv);
llama_log_set(llama_log_callback_logTee, nullptr);
#endif // LOG_DISABLE_LOGS #endif // LOG_DISABLE_LOGS
// TODO: Dump params ? // TODO: Dump params ?
@ -438,6 +445,7 @@ int main(int argc, char ** argv) {
} }
} }
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str()); LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n"); LOG_TEE("\n\n");

View File

@ -234,6 +234,55 @@ node index.js
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots. - **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
*Options:*
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such are `mirostat` are supported.
*Examples:*
You can use either Python `openai` library with appropriate checkpoints:
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
```
... or raw HTTP requests:
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
## More examples ## More examples
### Change system prompt on runtime ### Change system prompt on runtime

View File

@ -11,10 +11,10 @@ app = Flask(__name__)
slot_id = -1 slot_id = -1
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.") parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n') parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ") parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ") parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ") parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>") parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080') parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="") parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
@ -34,19 +34,19 @@ def is_present(json, key):
#convert chat to prompt #convert chat to prompt
def convert_chat(messages): def convert_chat(messages):
prompt = "" + args.chat_prompt.replace("\\n", "\n")
system_n = args.system_name.replace("\\n", "\n") system_n = args.system_name
user_n = args.user_name.replace("\\n", "\n") user_n = args.user_name
ai_n = args.ai_name.replace("\\n", "\n") ai_n = args.ai_name
stop = args.stop.replace("\\n", "\n") stop = args.stop
prompt = "" + args.chat_prompt + stop
for line in messages: for line in messages:
if (line["role"] == "system"): if (line["role"] == "system"):
prompt += f"{system_n}{line['content']}" prompt += f"{system_n}{line['content']}{stop}"
if (line["role"] == "user"): if (line["role"] == "user"):
prompt += f"{user_n}{line['content']}" prompt += f"{user_n}{line['content']}{stop}"
if (line["role"] == "assistant"): if (line["role"] == "assistant"):
prompt += f"{ai_n}{line['content']}{stop}" prompt += f"{ai_n}{line['content']}{stop}"
prompt += ai_n.rstrip() prompt += ai_n.rstrip()
@ -70,6 +70,7 @@ def make_postData(body, chat=False, stream=False):
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"] if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"] if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
if(is_present(body, "seed")): postData["seed"] = body["seed"] if(is_present(body, "seed")): postData["seed"] = body["seed"]
if(is_present(body, "grammar")): postData["grammar"] = body["grammar"]
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()] if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
if (args.stop != ""): if (args.stop != ""):
postData["stop"] = [args.stop] postData["stop"] = [args.stop]
@ -130,7 +131,7 @@ def make_resData_stream(data, chat=False, time_now = 0, start=False):
} }
] ]
} }
slot_id = data["slot_id"] slot_id = data.get("slot_id")
if (chat): if (chat):
if (start): if (start):
resData["choices"][0]["delta"] = { resData["choices"][0]["delta"] = {
@ -150,11 +151,13 @@ def make_resData_stream(data, chat=False, time_now = 0, start=False):
return resData return resData
@app.route('/chat/completions', methods=['POST']) @app.route('/chat/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/chat/completions', methods=['POST']) @app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
def chat_completions(): def chat_completions():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403) return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json() body = request.get_json()
stream = False stream = False
tokenize = False tokenize = False
@ -177,20 +180,22 @@ def chat_completions():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time()) time_now = int(time.time())
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True) resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
yield 'data: {}\n'.format(json.dumps(resData)) yield 'data: {}\n\n'.format(json.dumps(resData))
for line in data.iter_lines(): for line in data.iter_lines():
if line: if line:
decoded_line = line.decode('utf-8') decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now) resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData)) yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream') return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
@app.route('/completions', methods=['POST']) @app.route('/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/completions', methods=['POST']) @app.route('/v1/completions', methods=['POST', 'OPTIONS'])
def completion(): def completion():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403) return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json() body = request.get_json()
stream = False stream = False
tokenize = False tokenize = False
@ -216,8 +221,8 @@ def completion():
if line: if line:
decoded_line = line.decode('utf-8') decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now) resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData)) yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream') return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
if __name__ == '__main__': if __name__ == '__main__':
app.run(args.host, port=args.port) app.run(args.host, port=args.port)

View File

@ -29,6 +29,8 @@
#define SERVER_VERBOSE 1 #define SERVER_VERBOSE 1
#endif #endif
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json; using json = nlohmann::json;
struct server_params struct server_params
@ -59,6 +61,10 @@ static bool server_verbose = false;
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
json oaicompat_completion_params_parse(const json &body);
std::string format_chatml(std::vector<json> messages);
// //
// base64 utils (TODO: move to common in the future) // base64 utils (TODO: move to common in the future)
// //
@ -149,15 +155,23 @@ struct task_server {
json data; json data;
bool infill_mode = false; bool infill_mode = false;
bool embedding_mode = false; bool embedding_mode = false;
int multitask_id = -1;
}; };
struct task_result { struct task_result {
int id; int id;
int multitask_id = -1;
bool stop; bool stop;
bool error; bool error;
json result_json; json result_json;
}; };
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states // TODO: can become bool if we can't find use of more states
enum slot_state enum slot_state
{ {
@ -378,6 +392,9 @@ struct llama_client_slot
bool stopped_word = false; bool stopped_word = false;
bool stopped_limit = false; bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word; std::string stopping_word;
// sampling // sampling
@ -397,6 +414,9 @@ struct llama_client_slot
double t_prompt_processing; // ms double t_prompt_processing; // ms
double t_token_generation; // ms double t_token_generation; // ms
// multitasks
int multitask_id = -1;
void reset() { void reset() {
num_prompt_tokens = 0; num_prompt_tokens = 0;
generated_text = ""; generated_text = "";
@ -477,7 +497,7 @@ struct llama_client_slot
}; };
} }
void print_timings() { void print_timings() const {
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed); __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
@ -520,7 +540,8 @@ struct llama_server_context
std::vector<task_server> queue_tasks; std::vector<task_server> queue_tasks;
std::vector<task_result> queue_results; std::vector<task_result> queue_results;
std::mutex mutex_tasks; std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::mutex mutex_results; std::mutex mutex_results;
~llama_server_context() ~llama_server_context()
@ -609,6 +630,11 @@ struct llama_server_context
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{ {
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string, // If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string. // or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens; std::vector<llama_token> prompt_tokens;
@ -624,12 +650,12 @@ struct llama_server_context
std::vector<llama_token> p; std::vector<llama_token> p;
if (first) if (first)
{ {
p = ::llama_tokenize(ctx, s, add_bos); p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false; first = false;
} }
else else
{ {
p = ::llama_tokenize(ctx, s, false); p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
} }
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} }
@ -646,7 +672,7 @@ struct llama_server_context
else else
{ {
auto s = json_prompt.template get<std::string>(); auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_bos); prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
} }
return prompt_tokens; return prompt_tokens;
@ -677,6 +703,14 @@ struct llama_server_context
slot_params default_params; slot_params default_params;
llama_sampling_params default_sparams; llama_sampling_params default_sparams;
if (data.count("__oaicompat") != 0) {
slot->oaicompat = true;
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot->oaicompat = false;
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false); slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false); slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
@ -1090,16 +1124,40 @@ struct llama_server_context
return slot.images.size() > 0; return slot.images.size() > 0;
} }
void send_error(int id, std::string error) void send_error(task_server& task, std::string error)
{ {
std::lock_guard<std::mutex> lock(mutex_results); std::lock_guard<std::mutex> lock(mutex_results);
task_result res; task_result res;
res.id = id; res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = false;
res.error = true; res.error = true;
res.result_json = { { "content", error } }; res.result_json = { { "content", error } };
queue_results.push_back(res); queue_results.push_back(res);
} }
void add_multi_task(int id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
json get_model_props() json get_model_props()
{ {
return get_formated_generation(slots[0]); return get_formated_generation(slots[0]);
@ -1144,6 +1202,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results); std::lock_guard<std::mutex> lock(mutex_results);
task_result res; task_result res;
res.id = slot.task_id; res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false; res.error = false;
res.stop = false; res.stop = false;
@ -1169,6 +1228,12 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
} }
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.push_back(res); queue_results.push_back(res);
} }
@ -1177,6 +1242,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results); std::lock_guard<std::mutex> lock(mutex_results);
task_result res; task_result res;
res.id = slot.task_id; res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false; res.error = false;
res.stop = true; res.stop = true;
@ -1216,6 +1282,18 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
} }
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
// parent multitask, if any, needs to be updated
if (slot.multitask_id != -1)
{
update_multi_task(slot.multitask_id, slot.task_id, res);
}
queue_results.push_back(res); queue_results.push_back(res);
} }
@ -1224,6 +1302,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results); std::lock_guard<std::mutex> lock(mutex_results);
task_result res; task_result res;
res.id = slot.task_id; res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false; res.error = false;
res.stop = true; res.stop = true;
@ -1250,15 +1329,26 @@ struct llama_server_context
queue_results.push_back(res); queue_results.push_back(res);
} }
int request_completion(json data, bool infill, bool embedding) int request_completion(json data, bool infill, bool embedding, int multitask_id)
{ {
std::lock_guard<std::mutex> lock(mutex_tasks); std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task; task_server task;
task.id = id_gen++; task.id = id_gen++;
task.data = data; task.target_id = 0;
task.data = std::move(data);
task.infill_mode = infill; task.infill_mode = infill;
task.embedding_mode = embedding; task.embedding_mode = embedding;
task.type = COMPLETION_TASK; task.type = COMPLETION_TASK;
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.at("prompt").size() > 1)
{
lock.unlock(); // entering new func scope
return split_multiprompt_task(task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task); queue_tasks.push_back(task);
return task.id; return task.id;
} }
@ -1277,8 +1367,17 @@ struct llama_server_context
for (int i = 0; i < (int) queue_results.size(); i++) for (int i = 0; i < (int) queue_results.size(); i++)
{ {
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (queue_results[i].multitask_id == task_id)
{
update_multi_task(task_id, queue_results[i].id, queue_results[i]);
queue_results.erase(queue_results.begin() + i);
continue;
}
if (queue_results[i].id == task_id) if (queue_results[i].id == task_id)
{ {
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i]; task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i); queue_results.erase(queue_results.begin() + i);
return res; return res;
@ -1368,6 +1467,27 @@ struct llama_server_context
queue_tasks.push_back(task); queue_tasks.push_back(task);
} }
int split_multiprompt_task(task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
int multitask_id = id_gen++;
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++)
{
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
// subtasks inherit everything else (infill mode, embedding mode, etc.)
subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
}
// queue up the multitask so we can track its subtask progression
add_multi_task(multitask_id, subtask_ids);
return multitask_id;
}
void process_tasks() void process_tasks()
{ {
std::lock_guard<std::mutex> lock(mutex_tasks); std::lock_guard<std::mutex> lock(mutex_tasks);
@ -1383,7 +1503,7 @@ struct llama_server_context
{ {
LOG_TEE("slot unavailable\n"); LOG_TEE("slot unavailable\n");
// send error result // send error result
send_error(task.id, "slot unavailable"); send_error(task, "slot unavailable");
return; return;
} }
@ -1397,11 +1517,12 @@ struct llama_server_context
slot->infill = task.infill_mode; slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode; slot->embedding = task.embedding_mode;
slot->task_id = task.id; slot->task_id = task.id;
slot->multitask_id = task.multitask_id;
if (!launch_slot_with_data(slot, task.data)) if (!launch_slot_with_data(slot, task.data))
{ {
// send error result // send error result
send_error(task.id, "internal_error"); send_error(task, "internal_error");
break; break;
} }
} break; } break;
@ -1417,6 +1538,38 @@ struct llama_server_context
} break; } break;
} }
} }
// remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_result aggregate_result;
aggregate_result.id = queue_iterator->id;
aggregate_result.stop = true;
aggregate_result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (auto& subres : queue_iterator->results)
{
result_jsons.push_back(subres.result_json);
aggregate_result.error = aggregate_result.error && subres.error;
}
aggregate_result.result_json = json{ "results", result_jsons };
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
} }
bool update_slots() { bool update_slots() {
@ -1808,6 +1961,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -spf FNAME, --system-prompt-file FNAME\n"); printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n"); printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf("\n"); printf("\n");
} }
@ -2162,6 +2316,11 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
} }
params.mmproj = argv[i]; params.mmproj = argv[i];
} }
else if (arg == "--log-disable")
{
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else else
{ {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@ -2178,6 +2337,232 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
} }
} }
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
/* llama.cpp completion api semantics */
json oaicompat_completion_params_parse(
const json &body /* openai api json semantics */)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
if (llama_params.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
static json format_partial_response( static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) { ) {
@ -2333,7 +2718,7 @@ int main(int argc, char **argv)
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res) svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
{ {
json data = json::parse(req.body); json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false, false); const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) { if (!json_value(data, "stream", false)) {
std::string completion_text; std::string completion_text;
task_result result = llama.next_result(task_id); task_result result = llama.next_result(task_id);
@ -2396,10 +2781,102 @@ int main(int argc, char **argv)
} }
}); });
svr.Get("/v1/models", [&params](const httplib::Request&, httplib::Response& res)
{
std::time_t t = std::time(0);
json models = {
{"object", "list"},
{"data", {
{
{"id", params.model_alias},
{"object", "model"},
{"created", t},
{"owned_by", "llamacpp"}
},
}}
};
res.set_content(models.dump(), "application/json");
});
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
if (!result.error && result.stop) {
json oaicompat_result = format_final_response_oaicompat(data, result);
res.set_content(oaicompat_result.dump(-1, ' ', false,
json::error_handler_t::replace),
"application/json");
} else {
res.status = 500;
res.set_content(result.result_json["content"], "text/plain");
return;
}
} else {
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
while (true) {
task_result llama_result = llama.next_result(task_id);
if (!llama_result.error) {
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
for (auto it = result_array.begin(); it != result_array.end(); ++it)
{
if (!it->empty()) {
const std::string str =
"data: " +
it->dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
return false;
}
}
}
if (llama_result.stop) {
break;
}
} else {
const std::string str =
"error: " +
llama_result.result_json.dump(-1, ' ', false,
json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
return false;
}
break;
}
}
sink.done();
return true;
};
auto on_complete = [task_id, &llama](bool) {
// cancel request
llama.request_cancel(task_id);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
});
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res) svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{ {
json data = json::parse(req.body); json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true, false); const int task_id = llama.request_completion(data, true, false, -1);
if (!json_value(data, "stream", false)) { if (!json_value(data, "stream", false)) {
std::string completion_text; std::string completion_text;
task_result result = llama.next_result(task_id); task_result result = llama.next_result(task_id);
@ -2503,7 +2980,7 @@ int main(int argc, char **argv)
{ {
prompt = ""; prompt = "";
} }
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true); const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
task_result result = llama.next_result(task_id); task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json"); return res.set_content(result.result_json.dump(), "application/json");
}); });

View File

@ -75,7 +75,7 @@ int main(int argc, char ** argv) {
// make sure the KV cache is big enough to hold all the prompt and generated tokens // make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) { if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
return 1; return 1;
} }

View File

@ -0,0 +1,8 @@
# llama.cpp/examples/speculative
Demonstartion of speculative decoding and tree-based speculative decoding techniques
More info:
- https://github.com/ggerganov/llama.cpp/pull/2926
- https://github.com/ggerganov/llama.cpp/pull/3624

View File

@ -203,8 +203,9 @@ int main(int argc, char ** argv) {
const std::string token_str = llama_token_to_piece(ctx_tgt, id); const std::string token_str = llama_token_to_piece(ctx_tgt, id);
if (!params.use_color) {
printf("%s", token_str.c_str()); printf("%s", token_str.c_str());
fflush(stdout); }
if (id == llama_token_eos(model_tgt)) { if (id == llama_token_eos(model_tgt)) {
has_eos = true; has_eos = true;
@ -236,10 +237,18 @@ int main(int argc, char ** argv) {
++n_past_tgt; ++n_past_tgt;
++n_past_dft; ++n_past_dft;
++i_dft; ++i_dft;
if (params.use_color) {
// Color token according to its origin sequence
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
fflush(stdout);
}
continue; continue;
} }
} }
if (params.use_color) {
printf("%s", token_str.c_str());
}
fflush(stdout);
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());

View File

@ -1295,10 +1295,6 @@ int main(int argc, char ** argv) {
opt_cb_data.last_save_iter = opt->iter; opt_cb_data.last_save_iter = opt->iter;
} }
if (alloc) {
ggml_allocr_free(alloc);
}
ggml_free(opt->ctx); ggml_free(opt->ctx);
free_train_state(train); free_train_state(train);
ggml_free(model.ctx); ggml_free(model.ctx);

View File

@ -137,7 +137,7 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor); add_allocated_tensor(alloc, tensor);
size_t cur_max = (char*)addr - (char*)alloc->data + size; size_t cur_max = (char*)addr - (char*)alloc->base + size;
if (cur_max > alloc->max_size) { if (cur_max > alloc->max_size) {
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) { for (int i = 0; i < 1024; i++) {

View File

@ -1,4 +1,5 @@
#include <algorithm> #include <algorithm>
#include <cinttypes>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <limits> #include <limits>
@ -442,6 +443,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_SCALE_BLOCK_SIZE 256 #define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_CLAMP_BLOCK_SIZE 256 #define CUDA_CLAMP_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
#define CUDA_ALIBI_BLOCK_SIZE 32 #define CUDA_ALIBI_BLOCK_SIZE 32
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256 #define CUDA_QUANTIZE_BLOCK_SIZE 256
@ -500,6 +502,31 @@ static size_t g_scratch_offset = 0;
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
}
return x;
}
static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i = blockDim.x*blockIdx.x + threadIdx.x;
@ -576,15 +603,6 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] * x[i]; dst[i] = x[i] * x[i];
} }
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}
template <int block_size> template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols) { static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
@ -623,14 +641,6 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
} }
} }
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
template <int block_size> template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) { static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
@ -4609,8 +4619,8 @@ static __global__ void rope(
template<typename T, bool has_pos> template<typename T, bool has_pos>
static __global__ void rope_neox( static __global__ void rope_neox(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base, const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
) { ) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
@ -4619,23 +4629,25 @@ static __global__ void rope_neox(
} }
const int row = blockDim.x*blockIdx.x + threadIdx.x; const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col/2; const int ib = col / n_dims;
const int ic = col % n_dims;
const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows; const int i2 = row/p_delta_rows;
// simplified from `(ib * ncols + col) * (-1 / ncols)`, where ib is assumed to be zero float cur_rot = inv_ndims * ic - ib;
const float cur_rot = -float(col)/ncols;
const int p = has_pos ? pos[i2] : 0; const int p = has_pos ? pos[i2] : 0;
const float theta_base = p*powf(freq_base, cur_rot); const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
float cos_theta, sin_theta; float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0]; const float x0 = x[i + 0];
const float x1 = x[i + ncols/2]; const float x1 = x[i + n_dims/2];
dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
} }
static __global__ void rope_glm_f32( static __global__ void rope_glm_f32(
@ -4714,45 +4726,74 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
} }
// the CUDA soft max implementation differs from the CPU implementation static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
// instead of doubles floats are used const int tid = threadIdx.x;
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) { const int rowx = blockIdx.x;
const int row = blockDim.x*blockIdx.x + threadIdx.x; const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = blockDim.y;
const int tid = threadIdx.y; const int block_size = blockDim.x;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
__shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE/WARP_SIZE];
float max_val = -INFINITY; float max_val = -INFINITY;
for (int col = tid; col < ncols; col += block_size) { for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col; const int ix = rowx*ncols + col;
max_val = max(max_val, x[i]); const int iy = rowy*ncols + col;
max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
} }
// find the max value in the block // find the max value in the block
#pragma unroll max_val = warp_reduce_max(max_val);
for (int mask = 16; mask > 0; mask >>= 1) { if (block_size > WARP_SIZE) {
max_val = max(max_val, __shfl_xor_sync(0xffffffff, max_val, mask, 32)); if (warp_id == 0) {
buf[lane_id] = -INFINITY;
}
__syncthreads();
if (lane_id == 0) {
buf[warp_id] = max_val;
}
__syncthreads();
max_val = buf[lane_id];
max_val = warp_reduce_max(max_val);
} }
float tmp = 0.f; float tmp = 0.f;
for (int col = tid; col < ncols; col += block_size) { for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col; const int ix = rowx*ncols + col;
const float val = expf(x[i] - max_val); const int iy = rowy*ncols + col;
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
tmp += val; tmp += val;
dst[i] = val; dst[ix] = val;
} }
// sum up partial sums // find the sum of exps in the block
#pragma unroll tmp = warp_reduce_sum(tmp);
for (int mask = 16; mask > 0; mask >>= 1) { if (block_size > WARP_SIZE) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); if (warp_id == 0) {
buf[lane_id] = 0.f;
}
__syncthreads();
if (lane_id == 0) {
buf[warp_id] = tmp;
}
__syncthreads();
tmp = buf[lane_id];
tmp = warp_reduce_sum(tmp);
} }
const float inv_tmp = 1.f / tmp; const float inv_tmp = 1.f / tmp;
for (int col = tid; col < ncols; col += block_size) { for (int col = tid; col < ncols; col += block_size) {
const int i = row*ncols + col; const int i = rowx*ncols + col;
dst[i] *= inv_tmp; dst[i] *= inv_tmp;
} }
} }
@ -5738,20 +5779,26 @@ static void rope_cuda(
template<typename T> template<typename T>
static void rope_neox_cuda( static void rope_neox_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows, const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) { ) {
GGML_ASSERT(ncols % 2 == 0); GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1); const dim3 block_nums(nrows, num_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;
if (pos == nullptr) { if (pos == nullptr) {
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>( rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims
); );
} else { } else {
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>( rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims
); );
} }
} }
@ -5783,10 +5830,12 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past); diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
} }
static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) { static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
const dim3 block_dims(1, WARP_SIZE, 1); int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1); const dim3 block_nums(nrows_x, 1, 1);
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x); soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
} }
static void im2col_f32_f16_cuda(const float * x, half * dst, static void im2col_f32_f16_cuda(const float * x, half * dst,
@ -6706,15 +6755,14 @@ inline void ggml_cuda_op_rope(
GGML_ASSERT(false); GGML_ASSERT(false);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream); rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
} else if (is_neox) { } else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
if (src0->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda( rope_neox_cuda(
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream attn_factor, corr_dims, main_stream
); );
} else if (src0->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda( rope_neox_cuda(
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor, (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream attn_factor, corr_dims, main_stream
); );
} else { } else {
@ -6838,14 +6886,18 @@ inline void ggml_cuda_op_soft_max(
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
soft_max_f32_cuda(src0_dd, dst_dd, ne00, nrows, main_stream); float scale = 1.0f;
memcpy(&scale, dst->op_params, sizeof(float));
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
(void) src1;
(void) dst; (void) dst;
(void) src1_dd;
} }
inline void ggml_cuda_op_scale( inline void ggml_cuda_op_scale(
@ -8057,7 +8109,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
if (tensor->op == GGML_OP_MUL_MAT) { if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG #ifndef NDEBUG
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]); fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = " PRId64 ", src1->ne[3] = " PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
#endif #endif
return false; return false;
} }

View File

@ -1028,20 +1028,27 @@ void ggml_metal_graph_compute(
int nth = 32; // SIMD width int nth = 32; // SIMD width
if (ne00%4 == 0) { if (ne00%4 == 0) {
while (nth < ne00/4 && nth < 256) {
nth *= 2;
}
[encoder setComputePipelineState:ctx->pipeline_soft_max_4]; [encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else { } else {
do { while (nth < ne00 && nth < 1024) {
nth *= 2; nth *= 2;
} while (nth <= ne00 && nth <= 1024); }
nth /= 2;
[encoder setComputePipelineState:ctx->pipeline_soft_max]; [encoder setComputePipelineState:ctx->pipeline_soft_max];
} }
const float scale = ((float *) dst->op_params)[0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
@ -1076,7 +1083,7 @@ void ggml_metal_graph_compute(
// find the break-even point where the matrix-matrix kernel becomes more efficient compared // find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel // to the matrix-vector kernel
int ne11_mm_min = 1; int ne11_mm_min = src0t == GGML_TYPE_F16 ? 1 : 16;
#if 0 #if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models // the numbers below are measured on M2 Ultra for 7B and 13B models
@ -1351,7 +1358,11 @@ void ggml_metal_graph_compute(
float eps; float eps;
memcpy(&eps, dst->op_params, sizeof(float)); memcpy(&eps, dst->op_params, sizeof(float));
const int nth = MIN(512, ne00); int nth = 32; // SIMD width
while (nth < ne00/4 && nth < 1024) {
nth *= 2;
}
[encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setComputePipelineState:ctx->pipeline_rms_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1359,7 +1370,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows = ggml_nrows(src0);
@ -1433,7 +1444,8 @@ void ggml_metal_graph_compute(
const int n_past = ((int32_t *) dst->op_params)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2]; const int mode = ((int32_t *) dst->op_params)[2];
const int n_orig_ctx = ((int32_t *) dst->op_params)[3]; // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));

View File

@ -39,6 +39,8 @@ typedef struct {
int8_t qs[QK8_0]; // quants int8_t qs[QK8_0]; // quants
} block_q8_0; } block_q8_0;
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
// general-purpose kernel for addition of two tensors // general-purpose kernel for addition of two tensors
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3 // pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
// cons: not very efficient // cons: not very efficient
@ -180,10 +182,12 @@ kernel void kernel_gelu(
kernel void kernel_soft_max( kernel void kernel_soft_max(
device const float * src0, device const float * src0,
device const float * src1,
device float * dst, device float * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
@ -195,72 +199,76 @@ kernel void kernel_soft_max(
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device const float * pmask = src1 ? src1 + i01*ne00 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max // parallel max
float lmax = tpitg < ne00 ? psrc0[tpitg] : -INFINITY; float lmax = -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00; i00 += ntg) { for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]); lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
} }
float max = simd_max(lmax); // find the max value in the block
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) { if (tiisg == 0) {
buf[sgitg] = max; buf[sgitg] = max_val;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 max_val = buf[tiisg];
for (uint i = ntg / 32 / 2; i > 0; i /= 2) { max_val = simd_max(max_val);
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
} }
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum // parallel sum
float lsum = 0.0f; float lsum = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp(psrc0[i00] - max); const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum += exp_psrc0; lsum += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// wish to compute it twice.
pdst[i00] = exp_psrc0; pdst[i00] = exp_psrc0;
} }
float sum = simd_sum(lsum); float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) { if (tiisg == 0) {
buf[sgitg] = sum; buf[sgitg] = sum;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 sum = buf[tiisg];
for (uint i = ntg / 32 / 2; i > 0; i /= 2) { sum = simd_sum(sum);
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
} }
threadgroup_barrier(mem_flags::mem_threadgroup); const float inv_sum = 1.0f/sum;
sum = buf[0];
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] /= sum; pdst[i00] *= inv_sum;
} }
} }
kernel void kernel_soft_max_4( kernel void kernel_soft_max_4(
device const float * src0, device const float * src0,
device const float * src1,
device float * dst, device float * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
constant float & scale,
threadgroup float * buf [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
@ -272,63 +280,67 @@ kernel void kernel_soft_max_4(
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float4 * pmask = src1 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max // parallel max
float4 lmax4 = tpitg < ne00/4 ? psrc4[tpitg] : -INFINITY; float4 lmax4 = -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]); lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
} }
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max = simd_max(lmax);
float max_val = simd_max(lmax);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) { if (tiisg == 0) {
buf[sgitg] = max; buf[sgitg] = max_val;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 max_val = buf[tiisg];
for (uint i = ntg / 32 / 2; i > 0; i /= 2) { max_val = simd_max(max_val);
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
} }
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum // parallel sum
float4 lsum4 = 0.0f; float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp(psrc4[i00] - max); const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
lsum4 += exp_psrc4; lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4; pdst4[i00] = exp_psrc4;
} }
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3]; const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
float sum = simd_sum(lsum); float sum = simd_sum(lsum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) { if (tiisg == 0) {
buf[sgitg] = sum; buf[sgitg] = sum;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 sum = buf[tiisg];
for (uint i = ntg / 32 / 2; i > 0; i /= 2) { sum = simd_sum(sum);
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
} }
threadgroup_barrier(mem_flags::mem_threadgroup); const float inv_sum = 1.0f/sum;
sum = buf[0];
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] /= sum; pdst4[i00] *= inv_sum;
} }
} }
@ -435,14 +447,13 @@ kernel void kernel_rms_norm(
constant int64_t & ne00, constant int64_t & ne00,
constant uint64_t & nb01, constant uint64_t & nb01,
constant float & eps, constant float & eps,
threadgroup float * sum [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]], uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) { uint ntg[[threads_per_threadgroup]]) {
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
device const float * x_scalar = (device const float *) x;
float4 sumf = 0; float4 sumf = 0;
float all_sum = 0; float all_sum = 0;
@ -453,40 +464,30 @@ kernel void kernel_rms_norm(
} }
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3]; all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum); all_sum = simd_sum(all_sum);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) { if (tiisg == 0) {
sum[sgitg] = all_sum; buf[sgitg] = all_sum;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 all_sum = buf[tiisg];
for (uint i = ntg / 32 / 2; i > 0; i /= 2) { all_sum = simd_sum(all_sum);
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
}
if (tpitg == 0) {
for (int i = 4 * (ne00 / 4); i < ne00; i++) {
sum[0] += x_scalar[i];
}
sum[0] /= ne00;
} }
threadgroup_barrier(mem_flags::mem_threadgroup); const float mean = all_sum/ne00;
const float mean = sum[0];
const float scale = 1.0f/sqrt(mean + eps); const float scale = 1.0f/sqrt(mean + eps);
device float4 * y = (device float4 *) (dst + tgpig*ne00); device float4 * y = (device float4 *) (dst + tgpig*ne00);
device float * y_scalar = (device float *) y;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale; y[i00] = x[i00] * scale;
} }
if (tpitg == 0) {
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
y_scalar[i00] = x_scalar[i00] * scale;
}
}
} }
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
@ -576,7 +577,6 @@ inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thre
// putting them in the kernel cause a significant performance penalty // putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows #define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
//Note: This is a template, but strictly speaking it only applies to //Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not // quantizations where the block size is 32. It also does not
// giard against the number of rows not being divisible by // giard against the number of rows not being divisible by

View File

@ -1,20 +1,18 @@
#include "ggml.h"
#include "ggml-opencl.h" #include "ggml-opencl.h"
#include <array> #include <array>
#include <atomic> #include <atomic>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <sstream> #include <sstream>
#include <vector> #include <vector>
#include <limits>
#define CL_TARGET_OPENCL_VERSION 110 #define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h> #include <clblast.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "ggml.h"
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif

106
ggml.c
View File

@ -4826,7 +4826,17 @@ struct ggml_tensor * ggml_diag_mask_zero_inplace(
static struct ggml_tensor * ggml_soft_max_impl( static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
bool inplace) { bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(ggml_can_repeat_rows(mask, a));
}
bool is_node = false; bool is_node = false;
if (a->grad) { if (a->grad) {
@ -4835,9 +4845,13 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
float params[] = { scale };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX; result->op = GGML_OP_SOFT_MAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = mask;
return result; return result;
} }
@ -4845,13 +4859,21 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * ggml_soft_max( struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a) { struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, false); return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
} }
struct ggml_tensor * ggml_soft_max_inplace( struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a) { struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, true); return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
}
struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale) {
return ggml_soft_max_impl(ctx, a, mask, scale, false);
} }
// ggml_soft_max_back // ggml_soft_max_back
@ -9373,7 +9395,7 @@ static bool ggml_compute_forward_mul_mat_use_blas(
// TODO: find the optimal values for these // TODO: find the optimal values for these
if (ggml_is_contiguous(src0) && if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) && ggml_is_contiguous(src1) &&
src0->type == GGML_TYPE_F32 && //src0->type == GGML_TYPE_F32 &&
src1->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
@ -10551,20 +10573,25 @@ static void ggml_compute_forward_diag_mask_zero(
void ggml_compute_forward_soft_max_f32( void ggml_compute_forward_soft_max_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0)); assert(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
} }
float scale = 1.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
// TODO: handle transposed/permuted matrices // TODO: handle transposed/permuted matrices
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
const int64_t ne11 = src1 ? src1->ne[1] : 1;
const int nc = src0->ne[0]; const int nc = src0->ne[0];
const int nr = ggml_nrows(src0); const int nr = ggml_nrows(src0);
@ -10575,29 +10602,40 @@ void ggml_compute_forward_soft_max_f32(
const int ir0 = dr*ith; const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr); const int ir1 = MIN(ir0 + dr, nr);
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
for (int i1 = ir0; i1 < ir1; i1++) { for (int i1 = ir0; i1 < ir1; i1++) {
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
ggml_vec_cpy_f32 (nc, wp, sp);
ggml_vec_scale_f32(nc, wp, scale);
if (mp) {
ggml_vec_acc_f32(nc, wp, mp);
}
#ifndef NDEBUG #ifndef NDEBUG
for (int i = 0; i < nc; ++i) { for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]); //printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(sp[i])); assert(!isnan(wp[i]));
} }
#endif #endif
float max = -INFINITY; float max = -INFINITY;
ggml_vec_max_f32(nc, &max, sp); ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = 0.0; ggml_float sum = 0.0;
uint16_t scvt; uint16_t scvt;
for (int i = 0; i < nc; i++) { for (int i = 0; i < nc; i++) {
if (sp[i] == -INFINITY) { if (wp[i] == -INFINITY) {
dp[i] = 0.0f; dp[i] = 0.0f;
} else { } else {
// const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max); // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max); ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
memcpy(&scvt, &s, sizeof(scvt)); memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
sum += (ggml_float)val; sum += (ggml_float)val;
@ -10622,11 +10660,12 @@ void ggml_compute_forward_soft_max_f32(
static void ggml_compute_forward_soft_max( static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_soft_max_f32(params, src0, dst); ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
} break; } break;
default: default:
{ {
@ -13863,7 +13902,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
ggml_compute_forward_soft_max(params, tensor->src[0], tensor); ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
} break; } break;
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
{ {
@ -15590,7 +15629,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break; } break;
case GGML_OP_DIAG_MASK_ZERO: case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE: case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: case GGML_OP_ROPE_BACK:
@ -15606,6 +15644,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = 1; //TODO n_tasks = 1; //TODO
} break; } break;
case GGML_OP_SOFT_MAX:
{
n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
} break;
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
{ {
n_tasks = n_threads; n_tasks = n_threads;
@ -15689,13 +15731,14 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = 1; n_tasks = 1;
} break; } break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
default: default:
{ {
printf("%s: op %s not implemented\n", __func__, ggml_op_name(node->op)); fprintf(stderr, "%s: op not implemented: ", __func__);
if (node->op < GGML_OP_COUNT) {
fprintf(stderr, "%s\n", ggml_op_name(node->op));
} else {
fprintf(stderr, "%d\n", node->op);
}
GGML_ASSERT(false); GGML_ASSERT(false);
} break; } break;
} }
@ -15836,18 +15879,16 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
// thread scheduling for the different operations + work buffer size estimation // thread scheduling for the different operations + work buffer size estimation
for (int i = 0; i < cgraph->n_nodes; i++) { for (int i = 0; i < cgraph->n_nodes; i++) {
int n_tasks = 1;
struct ggml_tensor * node = cgraph->nodes[i]; struct ggml_tensor * node = cgraph->nodes[i];
const int n_tasks = ggml_get_n_tasks(node, n_threads);
size_t cur = 0; size_t cur = 0;
switch (node->op) { switch (node->op) {
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_DUP: case GGML_OP_DUP:
{ {
n_tasks = n_threads;
if (ggml_is_quantized(node->type)) { if (ggml_is_quantized(node->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} }
@ -15855,16 +15896,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
case GGML_OP_ADD: case GGML_OP_ADD:
case GGML_OP_ADD1: case GGML_OP_ADD1:
{ {
n_tasks = n_threads;
if (ggml_is_quantized(node->src[0]->type)) { if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
} }
} break; } break;
case GGML_OP_ACC: case GGML_OP_ACC:
{ {
n_tasks = n_threads;
if (ggml_is_quantized(node->src[0]->type)) { if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
} }
@ -15892,12 +15929,14 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_OUT_PROD: case GGML_OP_OUT_PROD:
{ {
n_tasks = n_threads;
if (ggml_is_quantized(node->src[0]->type)) { if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
} }
} break; } break;
case GGML_OP_SOFT_MAX:
{
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
{ {
GGML_ASSERT(node->src[0]->ne[3] == 1); GGML_ASSERT(node->src[0]->ne[3] == 1);
@ -15925,7 +15964,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
{ {
n_tasks = n_threads;
} break; } break;
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
{ {
@ -15943,8 +15981,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_FLASH_ATTN: case GGML_OP_FLASH_ATTN:
{ {
n_tasks = n_threads;
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src[1]->type == GGML_TYPE_F32) { if (node->src[1]->type == GGML_TYPE_F32) {
@ -15957,8 +15993,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_FLASH_FF: case GGML_OP_FLASH_FF:
{ {
n_tasks = n_threads;
if (node->src[1]->type == GGML_TYPE_F32) { if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
@ -15969,8 +16003,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_FLASH_ATTN_BACK:
{ {
n_tasks = n_threads;
const int64_t D = node->src[0]->ne[0]; const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
@ -15985,8 +16017,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
case GGML_OP_CROSS_ENTROPY_LOSS: case GGML_OP_CROSS_ENTROPY_LOSS:
{ {
n_tasks = n_threads;
cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks); cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
} break; } break;
case GGML_OP_COUNT: case GGML_OP_COUNT:

13
ggml.h
View File

@ -244,11 +244,10 @@
#define GGML_ASSERT(x) \ #define GGML_ASSERT(x) \
do { \ do { \
if (!(x)) { \ if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
fflush(stderr); \
fflush(stdout); \ fflush(stdout); \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_print_backtrace(); \ ggml_print_backtrace(); \
exit(1); \ abort(); \
} \ } \
} while (0) } while (0)
@ -1283,6 +1282,14 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// fused soft_max(a*scale + mask)
// mask is optional
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale);
GGML_API struct ggml_tensor * ggml_soft_max_back( GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,

View File

@ -92,6 +92,7 @@ class MODEL_ARCH(IntEnum):
BERT = auto() BERT = auto()
BLOOM = auto() BLOOM = auto()
STABLELM = auto() STABLELM = auto()
QWEN = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -132,6 +133,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.BERT: "bert", MODEL_ARCH.BERT: "bert",
MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -317,6 +319,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [ MODEL_ARCH.GPT2: [
# TODO # TODO
], ],
@ -336,6 +352,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.PERSIMMON: [ MODEL_ARCH.PERSIMMON: [
MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ROPE_FREQS,
], ],
MODEL_ARCH.QWEN: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
} }
# #

View File

@ -10,7 +10,7 @@ class TensorNameMap:
# Token embeddings # Token embeddings
MODEL_TENSOR.TOKEN_EMBD: ( MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox "gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 gpt-j mpt refact "transformer.wte", # gpt2 gpt-j mpt refact qwen
"transformer.word_embeddings", # falcon "transformer.word_embeddings", # falcon
"word_embeddings", # bloom "word_embeddings", # bloom
"model.embed_tokens", # llama-hf "model.embed_tokens", # llama-hf
@ -38,7 +38,7 @@ class TensorNameMap:
# Output # Output
MODEL_TENSOR.OUTPUT: ( MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox "embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"output", # llama-pth bloom "output", # llama-pth bloom
"word_embeddings_for_head", # persimmon "word_embeddings_for_head", # persimmon
), ),
@ -51,7 +51,7 @@ class TensorNameMap:
"norm", # llama-pth "norm", # llama-pth
"embeddings.LayerNorm", # bert "embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt "transformer.norm_f", # mpt
"ln_f", # refact bloom "ln_f", # refact bloom qwen
"language_model.encoder.final_layernorm", # persimmon "language_model.encoder.final_layernorm", # persimmon
), ),
@ -65,7 +65,7 @@ class TensorNameMap:
# Attention norm # Attention norm
MODEL_TENSOR.ATTN_NORM: ( MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox "gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt "transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b "transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom "h.{bid}.input_layernorm", # bloom
@ -85,7 +85,7 @@ class TensorNameMap:
# Attention query-key-value # Attention query-key-value
MODEL_TENSOR.ATTN_QKV: ( MODEL_TENSOR.ATTN_QKV: (
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
"transformer.h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
"transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.h.{bid}.self_attention.query_key_value", # falcon "transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom "h.{bid}.self_attention.query_key_value", # bloom
@ -119,7 +119,7 @@ class TensorNameMap:
# Attention output # Attention output
MODEL_TENSOR.ATTN_OUT: ( MODEL_TENSOR.ATTN_OUT: (
"gpt_neox.layers.{bid}.attention.dense", # gptneox "gpt_neox.layers.{bid}.attention.dense", # gptneox
"transformer.h.{bid}.attn.c_proj", # gpt2 refact "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon "transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom "h.{bid}.self_attention.dense", # bloom
@ -139,7 +139,7 @@ class TensorNameMap:
# Feed-forward norm # Feed-forward norm
MODEL_TENSOR.FFN_NORM: ( MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
"transformer.h.{bid}.ln_2", # gpt2 refact "transformer.h.{bid}.ln_2", # gpt2 refact qwen
"h.{bid}.post_attention_layernorm", # bloom "h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt "transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf "model.layers.{bid}.post_attention_layernorm", # llama-hf
@ -161,18 +161,20 @@ class TensorNameMap:
"encoder.layer.{bid}.intermediate.dense", # bert "encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j "transformer.h.{bid}.mlp.fc_in", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
), ),
# Feed-forward gate # Feed-forward gate
MODEL_TENSOR.FFN_GATE: ( MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth "layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
), ),
# Feed-forward down # Feed-forward down
MODEL_TENSOR.FFN_DOWN: ( MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom "h.{bid}.mlp.dense_4h_to_h", # bloom

690
llama.cpp

File diff suppressed because it is too large Load Diff

22
llama.h
View File

@ -158,6 +158,22 @@ extern "C" {
llama_seq_id all_seq_id; // used if seq_id == NULL llama_seq_id all_seq_id; // used if seq_id == NULL
} llama_batch; } llama_batch;
enum llama_model_kv_override_type {
LLAMA_KV_OVERRIDE_INT,
LLAMA_KV_OVERRIDE_FLOAT,
LLAMA_KV_OVERRIDE_BOOL,
};
struct llama_model_kv_override {
char key[128];
enum llama_model_kv_override_type tag;
union {
int64_t int_value;
double float_value;
bool bool_value;
};
};
struct llama_model_params { struct llama_model_params {
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors int32_t main_gpu; // the GPU that is used for scratch and small tensors
@ -165,9 +181,13 @@ extern "C" {
// called with a progress value between 0 and 1, pass NULL to disable // called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback; llama_progress_callback progress_callback;
// context pointer passed to the progress callback // context pointer passed to the progress callback
void * progress_callback_user_data; void * progress_callback_user_data;
// override key-value pairs of the model meta data
const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value. // Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible bool use_mmap; // use mmap if possible
@ -185,7 +205,7 @@ extern "C" {
// ref: https://github.com/ggerganov/llama.cpp/pull/2054 // ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, NaN = from model float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
float yarn_attn_factor; // YaRN magnitude scaling factor float yarn_attn_factor; // YaRN magnitude scaling factor
float yarn_beta_fast; // YaRN low correction dim float yarn_beta_fast; // YaRN low correction dim
float yarn_beta_slow; // YaRN high correction dim float yarn_beta_slow; // YaRN high correction dim

View File

@ -0,0 +1 @@
You are a helpful assistant.

View File

@ -0,0 +1,3 @@
-r requirements.txt
torch==2.1.1
transformers==4.35.2

View File

@ -1,5 +1,3 @@
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
set(BUILD_NUMBER 0) set(BUILD_NUMBER 0)
set(BUILD_COMMIT "unknown") set(BUILD_COMMIT "unknown")
set(BUILD_COMPILER "unknown") set(BUILD_COMPILER "unknown")
@ -58,23 +56,3 @@ else()
) )
set(BUILD_TARGET ${OUT}) set(BUILD_TARGET ${OUT})
endif() endif()
# Only write the build info if it changed
if(EXISTS ${OUTPUT_FILE})
file(READ ${OUTPUT_FILE} CONTENTS)
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMMIT ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMPILER ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_TARGET ${CMAKE_MATCH_1})
if (
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
NOT OLD_TARGET STREQUAL BUILD_TARGET
)
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()
else()
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()

View File

@ -0,0 +1,24 @@
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
# Only write the build info if it changed
if(EXISTS ${OUTPUT_FILE})
file(READ ${OUTPUT_FILE} CONTENTS)
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMMIT ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMPILER ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_TARGET ${CMAKE_MATCH_1})
if (
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
NOT OLD_TARGET STREQUAL BUILD_TARGET
)
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()
else()
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()