mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
CUDA: faster q2_K, q3_K MMQ + int8 tensor cores (#7921)
* CUDA: faster q2_K, q3_K MMQ + int8 tensor cores * try CI fix * try CI fix * try CI fix * fix data race * rever q2_K precision related changes
This commit is contained in:
parent
66ef1ceedf
commit
76d66ee0be
@ -188,13 +188,15 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
info.devices[id].nsm = prop.multiProcessorCount;
|
||||
}
|
||||
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
|
@ -73,6 +73,7 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
|
@ -331,6 +331,10 @@ static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
@ -661,6 +665,7 @@ struct ggml_cuda_device_info {
|
||||
int cc; // compute capability
|
||||
int nsm; // number of streaming multiprocessors
|
||||
size_t smpb; // max. shared memory per block
|
||||
size_t smpbo; // max. shared memory per block (with opt-in)
|
||||
bool vmm; // virtual memory support
|
||||
size_t vmm_granularity; // granularity of virtual memory
|
||||
size_t total_vram;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -130,6 +130,7 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
|
@ -265,36 +265,31 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
||||
|
||||
// contiguous u/y values
|
||||
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
||||
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
||||
const half2 & dm2, const float & d8) {
|
||||
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8) {
|
||||
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
int sumi_d = 0;
|
||||
int sumi_m = 0;
|
||||
float sumf_d = 0.0f;
|
||||
float sumf_m = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
||||
int sumi_d_sc = 0;
|
||||
|
||||
const int sc = scales[i0 / (QI8_1/2)];
|
||||
|
||||
// fill int with 4x m
|
||||
int m = sc >> 4;
|
||||
m |= m << 8;
|
||||
m |= m << 16;
|
||||
const float2 dm2f = __half22float2(dm2[i0/(QI8_1/2)]);
|
||||
int sumi_d = 0;
|
||||
int sumi_m = 0;
|
||||
|
||||
const int vi0 = v[i0/(QI8_1/2)];
|
||||
#pragma unroll
|
||||
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||||
sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
||||
sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
|
||||
const int vi = (vi0 >> (2*(i % (QI8_1/2)))) & 0x03030303;
|
||||
sumi_d = __dp4a(vi, u[i], sumi_d); // SIMD dot product
|
||||
sumi_m = __dp4a(0x01010101, u[i], sumi_m);
|
||||
}
|
||||
|
||||
sumi_d += sumi_d_sc * (sc & 0xF);
|
||||
sumf_d += dm2f.x * sumi_d;
|
||||
sumf_m += dm2f.y * sumi_m;
|
||||
}
|
||||
|
||||
const float2 dm2f = __half22float2(dm2);
|
||||
|
||||
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
|
||||
return d8*(sumf_d - sumf_m);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||||
@ -352,8 +347,10 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
||||
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
||||
int sumi_sc = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||||
sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
||||
const int vi = __vsubss4((v[i/2] >> (4*(i%2))) & 0x0F0F0F0F, 0x04040404);
|
||||
sumi_sc = __dp4a(vi, u[i], sumi_sc); // SIMD dot product
|
||||
}
|
||||
|
||||
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
||||
|
Loading…
Reference in New Issue
Block a user