mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
Merge branch 'prepare-PR-of-minicpm-v2.5' into master
This commit is contained in:
commit
77beb4d153
1
.gitignore
vendored
1
.gitignore
vendored
@ -71,7 +71,6 @@ models-mnt
|
||||
!models/ggml-vocab-*.gguf*
|
||||
|
||||
# Zig
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
|
||||
|
8
Makefile
8
Makefile
@ -19,6 +19,7 @@ BUILD_TARGETS = \
|
||||
llama-imatrix \
|
||||
llama-infill \
|
||||
llama-llava-cli \
|
||||
llama-minicpmv-cli\
|
||||
llama-lookahead \
|
||||
llama-lookup \
|
||||
llama-lookup-create \
|
||||
@ -949,6 +950,13 @@ llama-llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/lla
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp examples/llava/minicpmv_wrapper.h examples/llava/minicpmv_wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/minicpmv_wrapper.cpp -o $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp examples/llava/minicpmv_wrapper.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
@ -30,6 +30,7 @@ else()
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(minicpmv)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(main)
|
||||
|
@ -36,3 +36,8 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
add_library(minicpmv_wrapper OBJECT
|
||||
minicpmv_wrapper.cpp
|
||||
)
|
||||
target_link_libraries(minicpmv_wrapper PRIVATE llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
104
examples/llava/README_minicpmv2.5.md
Normal file
104
examples/llava/README_minicpmv2.5.md
Normal file
@ -0,0 +1,104 @@
|
||||
## MiniCPM-Llama3-V 2.5
|
||||
|
||||
### Usage
|
||||
|
||||
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
|
||||
|
||||
Clone llama.cpp and checkout to branch `minicpm-v2.5`:
|
||||
```bash
|
||||
git clone -b minicpm-v2.5 https://github.com/OpenBMB/llama.cpp.git
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5
|
||||
python ./convert.py ../MiniCPM-Llama3-V-2_5/model --outtype f16 --vocab-type bpe
|
||||
|
||||
# quantize int4 version
|
||||
./quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
# run f16 version
|
||||
./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
||||
### result
|
||||
We use this command on Xiaomi 14 Pro, and the measured results.
|
||||
```
|
||||
$./minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 -t 6 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
![alt text](assets/xiaomi14pro_test.jpeg)
|
BIN
examples/llava/assets/xiaomi14pro_test.jpeg
Normal file
BIN
examples/llava/assets/xiaomi14pro_test.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 304 KiB |
@ -3,6 +3,7 @@
|
||||
// I'll gradually clean and extend it
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
@ -70,26 +71,27 @@ static std::string format(const char * fmt, ...) {
|
||||
// key constants
|
||||
//
|
||||
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MiniCPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
@ -122,6 +124,14 @@ static std::string format(const char * fmt, ...) {
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
// MINICPMV
|
||||
// #define TN_MINICPMV_POS_EMBD "resampler.pos_embed"
|
||||
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||
#define TN_MINICPMV_QUERY "resampler.query"
|
||||
#define TN_MINICPMV_PROJ "resampler.proj.weight"
|
||||
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
|
||||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
|
||||
enum projector_type {
|
||||
@ -129,6 +139,7 @@ enum projector_type {
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
@ -136,6 +147,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
};
|
||||
|
||||
|
||||
@ -488,12 +500,34 @@ struct clip_vision_model {
|
||||
struct ggml_tensor * mm_model_mlp_2_b;
|
||||
struct ggml_tensor * mm_model_peg_0_w;
|
||||
struct ggml_tensor * mm_model_peg_0_b;
|
||||
|
||||
// MINICPMV projection
|
||||
// struct ggml_tensor * mm_model_pos_embed;
|
||||
struct ggml_tensor * mm_model_pos_embed_k;
|
||||
struct ggml_tensor * mm_model_query;
|
||||
struct ggml_tensor * mm_model_proj;
|
||||
struct ggml_tensor * mm_model_kv_proj;
|
||||
struct ggml_tensor * mm_model_attn_q_w;
|
||||
struct ggml_tensor * mm_model_attn_q_b;
|
||||
struct ggml_tensor * mm_model_attn_k_w;
|
||||
struct ggml_tensor * mm_model_attn_k_b;
|
||||
struct ggml_tensor * mm_model_attn_v_w;
|
||||
struct ggml_tensor * mm_model_attn_v_b;
|
||||
struct ggml_tensor * mm_model_attn_o_w;
|
||||
struct ggml_tensor * mm_model_attn_o_b;
|
||||
struct ggml_tensor * mm_model_ln_q_w;
|
||||
struct ggml_tensor * mm_model_ln_q_b;
|
||||
struct ggml_tensor * mm_model_ln_kv_w;
|
||||
struct ggml_tensor * mm_model_ln_kv_b;
|
||||
struct ggml_tensor * mm_model_ln_post_w;
|
||||
struct ggml_tensor * mm_model_ln_post_b;
|
||||
};
|
||||
|
||||
struct clip_ctx {
|
||||
bool has_text_encoder = false;
|
||||
bool has_vision_encoder = false;
|
||||
bool has_llava_projector = false;
|
||||
bool has_minicpmv_projector = false;
|
||||
|
||||
struct clip_vision_model vision_model;
|
||||
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
||||
@ -520,7 +554,7 @@ struct clip_ctx {
|
||||
ggml_gallocr_t compute_alloc = NULL;
|
||||
};
|
||||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, std::pair<int, int> load_image_size = {448, 448}) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return nullptr;
|
||||
@ -529,10 +563,15 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
const auto & model = ctx->vision_model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
image_size_width = load_image_size.first;
|
||||
image_size_height = load_image_size.second;
|
||||
}
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
@ -542,7 +581,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
|
||||
const int batch_size = imgs->size;
|
||||
|
||||
if (ctx->has_llava_projector) {
|
||||
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
|
||||
@ -555,7 +594,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
|
||||
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
@ -563,25 +602,27 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
|
||||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
struct ggml_tensor * embeddings = inp;
|
||||
struct ggml_tensor * pos_embed;
|
||||
|
||||
if (ctx->has_patch_bias) {
|
||||
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
}
|
||||
|
||||
// concat class_embeddings and patch_embeddings
|
||||
struct ggml_tensor * embeddings = inp;
|
||||
if (ctx->has_class_embedding) {
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
if(ctx->has_llava_projector){
|
||||
// concat class_embeddings and patch_embeddings
|
||||
if (ctx->has_class_embedding) {
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
@ -589,6 +630,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings =
|
||||
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
||||
|
||||
if(ctx->has_minicpmv_projector){
|
||||
int pos_w = image_size_width/patch_size;
|
||||
int pos_h = image_size_height/patch_size;
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
|
||||
ggml_set_name(pos_embed, "pos_embed");
|
||||
ggml_set_input(pos_embed);
|
||||
}
|
||||
|
||||
// pre-layernorm
|
||||
if (ctx->has_pre_norm) {
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
@ -687,6 +736,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
|
||||
// llava projector
|
||||
if(ctx->has_llava_projector)
|
||||
{
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
|
||||
@ -864,6 +914,65 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
||||
embeddings = peg_0;
|
||||
}
|
||||
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
// minicpmv projector
|
||||
else if(ctx->has_minicpmv_projector)
|
||||
{
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
struct ggml_tensor * q = model.mm_model_query;
|
||||
{ // layernorm
|
||||
q = ggml_norm(ctx0, q, eps);
|
||||
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
||||
}
|
||||
struct ggml_tensor *k, *v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
|
||||
{ // layernorm
|
||||
v = ggml_norm(ctx0, v, eps);
|
||||
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
|
||||
}
|
||||
{ // position
|
||||
// q = ggml_add(ctx0, q, model.mm_model_pos_embed);
|
||||
k = ggml_add(ctx0, v, pos_embed);
|
||||
}
|
||||
|
||||
{ // attention
|
||||
const int hidden_size = 4096;
|
||||
const int d_head = 128;
|
||||
const int n_head = hidden_size/d_head;
|
||||
const int num_query = 96;
|
||||
|
||||
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
|
||||
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
|
||||
// permute
|
||||
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
|
||||
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
|
||||
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
||||
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
||||
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
||||
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
|
||||
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
|
||||
|
||||
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
|
||||
}
|
||||
{ // layernorm
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
|
||||
}
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -878,7 +987,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, std::pair<int, int> load_image_size) {
|
||||
struct ggml_context * meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@ -1020,7 +1129,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
|
||||
}
|
||||
|
||||
GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
|
||||
idx = gguf_find_key(ctx, KEY_HAS_MiniCPMV_PROJ);
|
||||
if (idx != -1) {
|
||||
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
|
||||
}
|
||||
|
||||
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
|
||||
|
||||
GGML_ASSERT(new_clip->has_vision_encoder);
|
||||
GGML_ASSERT(!new_clip->has_text_encoder);
|
||||
|
||||
@ -1031,6 +1146,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
@ -1272,6 +1388,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
||||
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
|
||||
vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
|
||||
vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
|
||||
vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
|
||||
vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
|
||||
vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
|
||||
vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
|
||||
vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
|
||||
vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
|
||||
vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
|
||||
vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
|
||||
vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
|
||||
vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
|
||||
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
|
||||
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
|
||||
vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
|
||||
vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
|
||||
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
|
||||
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
|
||||
}
|
||||
else {
|
||||
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||
@ -1310,7 +1447,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
|
||||
clip_image_f32_batch batch;
|
||||
batch.size = 1;
|
||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
|
||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, load_image_size);
|
||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
@ -1424,6 +1561,19 @@ static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32*
|
||||
}
|
||||
}
|
||||
|
||||
void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst) {
|
||||
dst->nx = src->nx;
|
||||
dst->ny = src->ny;
|
||||
dst->buf.resize(src->buf.size());
|
||||
const auto & m3 = ctx->image_mean;
|
||||
const auto & s3 = ctx->image_std;
|
||||
|
||||
for (size_t i = 0; i < src->buf.size(); ++i) {
|
||||
int c = i % 3; // rgb
|
||||
dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - m3[c]) / s3[c];
|
||||
}
|
||||
}
|
||||
|
||||
inline float clip(float x, float lower, float upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
@ -1807,12 +1957,100 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
||||
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
n_patches /= 4;
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
n_patches = 96;
|
||||
}
|
||||
|
||||
return n_patches;
|
||||
}
|
||||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>>& pos) {
|
||||
assert(embed_dim % 2 == 0);
|
||||
int H = pos.size();
|
||||
int W = pos[0].size();
|
||||
|
||||
std::vector<float> omega(embed_dim / 2);
|
||||
for (int i = 0; i < embed_dim / 2; ++i) {
|
||||
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
||||
for (int h = 0; h < H; ++h) {
|
||||
for (int w = 0; w < W; ++w) {
|
||||
for (int d = 0; d < embed_dim / 2; ++d) {
|
||||
float out_value = pos[h][w] * omega[d];
|
||||
emb[h][w][d] = sin(out_value);
|
||||
emb[h][w][d + embed_dim / 2] = cos(out_value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return emb;
|
||||
}
|
||||
|
||||
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>>& grid) {
|
||||
assert(embed_dim % 2 == 0);
|
||||
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
|
||||
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
|
||||
|
||||
int H = emb_h.size();
|
||||
int W = emb_h[0].size();
|
||||
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
||||
|
||||
for (int h = 0; h < H; ++h) {
|
||||
for (int w = 0; w < W; ++w) {
|
||||
for (int d = 0; d < embed_dim / 2; ++d) {
|
||||
emb[h][w][d] = emb_h[h][w][d];
|
||||
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
|
||||
}
|
||||
}
|
||||
}
|
||||
return emb;
|
||||
}
|
||||
|
||||
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
|
||||
int grid_h_size = image_size.first;
|
||||
int grid_w_size = image_size.second;
|
||||
|
||||
std::vector<float> grid_h(grid_h_size);
|
||||
std::vector<float> grid_w(grid_w_size);
|
||||
|
||||
for (int i = 0; i < grid_h_size; ++i) {
|
||||
grid_h[i] = static_cast<float>(i);
|
||||
}
|
||||
for (int i = 0; i < grid_w_size; ++i) {
|
||||
grid_w[i] = static_cast<float>(i);
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
|
||||
for (int h = 0; h < grid_h_size; ++h) {
|
||||
for (int w = 0; w < grid_w_size; ++w) {
|
||||
grid[h][w] = grid_w[w];
|
||||
}
|
||||
}
|
||||
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
|
||||
for (int h = 0; h < grid_h_size; ++h) {
|
||||
for (int w = 0; w < grid_w_size; ++w) {
|
||||
grid_2d[0][h][w] = grid_h[h];
|
||||
grid_2d[1][h][w] = grid_w[w];
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
|
||||
|
||||
int H = image_size.first;
|
||||
int W = image_size.second;
|
||||
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
|
||||
for (int h = 0; h < H; ++h) {
|
||||
for (int w = 0; w < W; ++w) {
|
||||
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
|
||||
}
|
||||
}
|
||||
|
||||
return pos_embed_2d;
|
||||
}
|
||||
|
||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, std::pair<int, int> load_image_size) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
@ -1821,10 +2059,10 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
|
||||
clip_image_f32_batch imgs{};
|
||||
imgs.size = 1;
|
||||
imgs.data = img;
|
||||
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
|
||||
return clip_image_batch_encode(ctx, n_threads, &imgs, vec, load_image_size);
|
||||
}
|
||||
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
|
||||
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, std::pair<int, int> load_image_size) {
|
||||
if (!ctx->has_vision_encoder) {
|
||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||
return false;
|
||||
@ -1834,6 +2072,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
if (ctx->has_llava_projector) {
|
||||
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
||||
}
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
}
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
|
||||
@ -1844,8 +2085,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int image_size = hparams.image_size;
|
||||
int image_size_width = image_size;
|
||||
int image_size_height = image_size;
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
image_size_width = load_image_size.first;
|
||||
image_size_height = load_image_size.second;
|
||||
}
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
|
||||
{
|
||||
@ -1855,7 +2102,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
for (size_t i = 0; i < imgs->size; i++) {
|
||||
const int nx = imgs->data[i].nx;
|
||||
const int ny = imgs->data[i].ny;
|
||||
GGML_ASSERT(nx == image_size && ny == image_size);
|
||||
if (!ctx->has_minicpmv_projector) {
|
||||
GGML_ASSERT(nx == image_size && ny == image_size);
|
||||
}
|
||||
|
||||
const int n = nx * ny;
|
||||
|
||||
@ -1872,37 +2121,74 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
||||
free(data);
|
||||
}
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
{
|
||||
// inspired from siglip:
|
||||
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
|
||||
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
|
||||
{
|
||||
if (ctx->has_class_embedding) {
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = std::floor(70.0*i/num_positions);
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
{
|
||||
// inspired from resampler of Qwen-VL:
|
||||
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
|
||||
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
|
||||
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
|
||||
int pos_w = image_size_width/patch_size;
|
||||
int pos_h = image_size_height/patch_size;
|
||||
int embed_dim = 4096;
|
||||
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||
|
||||
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
|
||||
for(int i=0;i<pos_w * pos_h;++i){
|
||||
for(int j=0;j<embed_dim;++j){
|
||||
pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
|
||||
free(pos_embed_data);
|
||||
}
|
||||
}
|
||||
else{
|
||||
{
|
||||
if (ctx->has_class_embedding) {
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
|
||||
{
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
{
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||
@ -2072,6 +2358,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||
return ctx->vision_model.mm_3_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
return 4096;
|
||||
}
|
||||
|
||||
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||
|
@ -3,6 +3,7 @@
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <utility>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
@ -36,7 +37,7 @@ struct clip_image_f32_batch {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, std::pair<int, int> load_image_size = {448, 448});
|
||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
@ -71,10 +72,12 @@ CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t byt
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
|
||||
|
||||
CLIP_API void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst);
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, std::pair<int, int> load_image_size = {448, 448});
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, std::pair<int, int> load_image_size = {448, 448});
|
||||
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
|
@ -409,3 +409,342 @@ void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||
free(embed->embed);
|
||||
free(embed);
|
||||
}
|
||||
|
||||
static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||
// std::vector<clip_image_f32*> img_res_v;
|
||||
// format VectN x H x W x RGB (N x 448 x 448 x 3)
|
||||
clip_image_f32 * img_res_v = clip_image_f32_init();
|
||||
std::pair<int, int> load_image_size;
|
||||
load_image_size.first = img->nx;
|
||||
load_image_size.second = img->ny;
|
||||
uhd_normalize_image_u8_to_f32(ctx_clip, img, img_res_v);
|
||||
|
||||
const int64_t t_img_enc_start_us = ggml_time_us();
|
||||
|
||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||
LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type);
|
||||
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res_v, image_embd, load_image_size); // image_embd shape is 96 x 4096
|
||||
if (!encoded) {
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int ensure_divide(int length, int patch_size) {
|
||||
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
||||
}
|
||||
|
||||
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||
int width = original_size.first;
|
||||
int height = original_size.second;
|
||||
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
|
||||
float r = static_cast<float>(width) / height;
|
||||
height = static_cast<int>(scale_resolution / std::sqrt(r));
|
||||
width = static_cast<int>(height * r);
|
||||
}
|
||||
int best_width = ensure_divide(width, patch_size);
|
||||
int best_height = ensure_divide(height, patch_size);
|
||||
return std::make_pair(best_width, best_height);
|
||||
}
|
||||
|
||||
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||
int width, height;
|
||||
std::tie(width, height) = original_size;
|
||||
int grid_x, grid_y;
|
||||
std::tie(grid_x, grid_y) = grid;
|
||||
|
||||
int refine_width = ensure_divide(width, grid_x);
|
||||
int refine_height = ensure_divide(height, grid_y);
|
||||
|
||||
int grid_width = refine_width / grid_x;
|
||||
int grid_height = refine_height / grid_y;
|
||||
|
||||
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
|
||||
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
|
||||
int best_grid_width, best_grid_height;
|
||||
std::tie(best_grid_width, best_grid_height) = best_grid_size;
|
||||
|
||||
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
|
||||
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
|
||||
return refine_size;
|
||||
}
|
||||
|
||||
inline int clip(int x, int lower, int upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
|
||||
const int nx = img.nx;
|
||||
const int ny = img.ny;
|
||||
|
||||
dst.nx = target_width;
|
||||
dst.ny = target_height;
|
||||
dst.buf.resize(3 * target_width * target_height);
|
||||
|
||||
float Cc;
|
||||
float C[5];
|
||||
float d0, d2, d3, a0, a1, a2, a3;
|
||||
int i, j, k, jj;
|
||||
int x, y;
|
||||
float dx, dy;
|
||||
float tx, ty;
|
||||
|
||||
tx = (float)nx / (float)target_width;
|
||||
ty = (float)ny / (float)target_height;
|
||||
|
||||
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
|
||||
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
|
||||
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
|
||||
|
||||
for (i = 0; i < target_height; i++) {
|
||||
for (j = 0; j < target_width; j++) {
|
||||
x = (int)(tx * j);
|
||||
y = (int)(ty * i);
|
||||
|
||||
dx = tx * j - x;
|
||||
dy = ty * i - y;
|
||||
|
||||
for (k = 0; k < 3; k++) {
|
||||
for (jj = 0; jj <= 3; jj++) {
|
||||
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
||||
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
||||
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
||||
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
||||
|
||||
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
||||
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
||||
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
||||
|
||||
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
|
||||
|
||||
d0 = C[0] - C[1];
|
||||
d2 = C[2] - C[1];
|
||||
d3 = C[3] - C[1];
|
||||
a0 = C[1];
|
||||
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
||||
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
||||
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
||||
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
|
||||
|
||||
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
|
||||
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// inspired from LLaVA-UHD:
|
||||
// -> https://arxiv.org/pdf/2403.11703
|
||||
// -> https://github.com/thunlp/LLaVA-UHD
|
||||
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
|
||||
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
|
||||
const std::pair<int, int> original_size={img->nx,img->ny};
|
||||
const int original_width = img->nx;
|
||||
const int original_height = img->ny;
|
||||
const float log_ratio = log(1.0*original_width/original_height); //
|
||||
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
||||
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||
|
||||
std::vector<std::vector<clip_image_u8 *>> images;
|
||||
LOG_TEE("%s: multiple %d\n", __func__, multiple);
|
||||
images.push_back(std::vector<clip_image_u8 *>());
|
||||
|
||||
if(multiple <= 1){
|
||||
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
|
||||
clip_image_u8 *source_image = clip_image_u8_init();
|
||||
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
||||
images[images.size()-1].push_back(source_image);
|
||||
}
|
||||
else if(multiple > 1){
|
||||
|
||||
std::vector<int> candidate_split_grids_nums;
|
||||
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
||||
if (i == 1 || i > max_slice_nums) {
|
||||
continue;
|
||||
}
|
||||
candidate_split_grids_nums.push_back(i);
|
||||
}
|
||||
|
||||
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
|
||||
clip_image_u8 *source_image = clip_image_u8_init();
|
||||
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
||||
images[images.size()-1].push_back(source_image);
|
||||
|
||||
std::vector<std::pair<int, int>> candidate_grids;
|
||||
|
||||
for (int split_grids_nums : candidate_split_grids_nums) {
|
||||
int m = 1;
|
||||
while (m <= split_grids_nums) {
|
||||
if (split_grids_nums % m == 0) {
|
||||
candidate_grids.emplace_back(m, split_grids_nums / m);
|
||||
}
|
||||
++m;
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<int, int> best_grid{1, 1};
|
||||
float min_error = std::numeric_limits<float>::infinity();
|
||||
|
||||
for (const auto& grid : candidate_grids) {
|
||||
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
|
||||
if (error < min_error) {
|
||||
best_grid = grid;
|
||||
min_error = error;
|
||||
}
|
||||
}
|
||||
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
||||
|
||||
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
|
||||
clip_image_u8 *refine_image = clip_image_u8_init();
|
||||
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
|
||||
|
||||
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
||||
|
||||
// split_to_patches
|
||||
int width = refine_image->nx;
|
||||
int height = refine_image->ny;
|
||||
int grid_x = int(width / best_grid.first);
|
||||
int grid_y = int(height / best_grid.second);
|
||||
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
|
||||
images.push_back(std::vector<clip_image_u8 *>());
|
||||
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
|
||||
clip_image_u8 * patch = clip_image_u8_init();
|
||||
patch->nx = grid_x;
|
||||
patch->ny = grid_y;
|
||||
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||
for (int y = patches_i; y < patches_i + grid_y; ++y) {
|
||||
for (int x = patches_j; x < patches_j + grid_x; ++x) {
|
||||
const int i = 3 * (y * refine_image->nx + x);
|
||||
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
|
||||
patch->buf[j] = refine_image->buf[i];
|
||||
patch->buf[j+1] = refine_image->buf[i+1];
|
||||
patch->buf[j+2] = refine_image->buf[i+2];
|
||||
}
|
||||
}
|
||||
images[images.size()-1].push_back(patch);
|
||||
}
|
||||
}
|
||||
}
|
||||
return images;
|
||||
}
|
||||
|
||||
struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) {
|
||||
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
|
||||
for (size_t i = 0; i < imgs.size(); ++i){
|
||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
||||
}
|
||||
}
|
||||
struct uhd_image_embed * results = new uhd_image_embed();
|
||||
|
||||
for (size_t i = 0; i < imgs.size(); ++i){
|
||||
results->image_embeds.push_back(std::vector<llava_image_embed *>());
|
||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||
float* image_embed = NULL;
|
||||
int n_image_pos = 0;
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
LOG_TEE("%s: coulnd't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||
result->embed = image_embed;
|
||||
result->n_image_pos = n_image_pos;
|
||||
results->image_embeds[i].push_back(result);
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
auto embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img);
|
||||
auto image_embed_slices = embeds->image_embeds;
|
||||
if (!image_embed_slices[0][0]){
|
||||
LOG_TEE("%s: failed to embeding image\n", __func__);
|
||||
return false;
|
||||
}
|
||||
std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw";
|
||||
unsigned char* slice_token;
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(fname.c_str(), &slice_token, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
LOG_TEE("%s: failed to load %s\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61);
|
||||
int all_n_img_pos=0;
|
||||
int token_len = clip_n_mmproj_embd(ctx_clip)*sizeof(float);
|
||||
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len);
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len);
|
||||
all_n_img_pos+=clip_n_patches(ctx_clip);
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len);
|
||||
if (image_embed_slices.size() > 1) {
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*2, token_len);
|
||||
for (size_t i = 1; i < image_embed_slices.size(); ++i) {
|
||||
for (size_t j = 0; j < image_embed_slices[i].size(); ++j) {
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len);
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len);
|
||||
all_n_img_pos+=clip_n_patches(ctx_clip);
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len);
|
||||
if (j == image_embed_slices[i].size() - 1) {
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*4, token_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*3, token_len);
|
||||
}
|
||||
*image_embd_out = all_image_embd;
|
||||
*n_img_pos_out = all_n_img_pos;
|
||||
return true;
|
||||
}
|
||||
|
||||
struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||||
unsigned char* image_bytes;
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
if (!loaded) {
|
||||
LOG_TEE("%s: failed to load %s\n", __func__, image_path);
|
||||
return NULL;
|
||||
}
|
||||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct uhd_image_embed * embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img);
|
||||
|
||||
clip_image_u8_free(img);
|
||||
free(image_bytes);
|
||||
return embeds;
|
||||
}
|
||||
|
||||
void llava_image_embed_free_uhd(struct uhd_image_embed * embed) {
|
||||
for (size_t i = 0; i < embed->image_embeds.size(); ++i){
|
||||
for (size_t j = 0; j < embed->image_embeds[i].size(); ++j){
|
||||
free(embed->image_embeds[i][j]->embed);
|
||||
free(embed->image_embeds[i][j]);
|
||||
}
|
||||
embed->image_embeds[i] = std::vector<struct llava_image_embed *>();
|
||||
}
|
||||
embed->image_embeds = std::vector<std::vector<struct llava_image_embed *>>();
|
||||
}
|
@ -19,6 +19,10 @@
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
struct uhd_image_embed {
|
||||
std::vector<std::vector<struct llava_image_embed *>> image_embeds;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -40,6 +44,13 @@ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct
|
||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||
/** free an embedding made with llava_image_embed_make_* */
|
||||
|
||||
/** build an image embed from image file bytes */
|
||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img);
|
||||
/** build an image embed from a path to an image filename */
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img_ollama(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
||||
LLAVA_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed);
|
||||
|
||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||
|
||||
|
158
examples/llava/minicpmv-cli.cpp
Normal file
158
examples/llava/minicpmv-cli.cpp
Normal file
@ -0,0 +1,158 @@
|
||||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "minicpmv_wrapper.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
LOG_TEE("%s", text);
|
||||
}
|
||||
|
||||
static struct minicpmv_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||
auto embeds = minicpmv_image_embed(params, fname);
|
||||
auto image_embed_slices = embeds->image_embeds;
|
||||
if (!image_embed_slices[0][0]) {
|
||||
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
if (params->prompt.empty() && params->interactive == false) {
|
||||
LOG_TEE("prompt should be given or interactive mode should be on");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto model = llava_init(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
const int64_t t_llava_init_start_us = ggml_time_us();
|
||||
auto ctx_llava = llava_init_context(params, model);
|
||||
|
||||
const int64_t t_llava_init_end_us = ggml_time_us();
|
||||
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
||||
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
||||
|
||||
const int64_t t_process_image_start_us = ggml_time_us();
|
||||
process_image(ctx_llava, image_embed_slices, params, n_past);
|
||||
const int64_t t_process_image_end_us = ggml_time_us();
|
||||
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
||||
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
||||
|
||||
llava_image_embed_free_uhd(embeds);
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static struct llama_sampling_context * llama_init(struct minicpmv_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
||||
// generate the response
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
return ctx_sampling;
|
||||
}
|
||||
|
||||
static const char * llama_loop(struct minicpmv_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
||||
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("llava", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (auto & image : params.image) {
|
||||
int n_past = 0;
|
||||
auto ctx_llava = minicpmv_init(¶ms, image, n_past);
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
LOG_TEE("<user>%s\n", params.prompt.c_str());
|
||||
LOG_TEE("<assistant>");
|
||||
auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response = "";
|
||||
bool have_tmp = false;
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0){
|
||||
if(!have_tmp)continue;
|
||||
else break;
|
||||
}
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
have_tmp = true;
|
||||
printf("%s", tmp);
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}else {
|
||||
while (true) {
|
||||
LOG_TEE("<user>");
|
||||
std::string prompt;
|
||||
std::getline(std::cin, prompt);
|
||||
LOG_TEE("<assistant>");
|
||||
auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
printf("%s", tmp);// mistral llava-1.6
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
fflush(stdout);
|
||||
}
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
382
examples/llava/minicpmv-convert-image-encoder-to-gguf.py
Normal file
382
examples/llava/minicpmv-convert-image-encoder-to-gguf.py
Normal file
@ -0,0 +1,382 @@
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
import timm
|
||||
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
|
||||
if name in (
|
||||
"logit_scale",
|
||||
"text_model.embeddings.position_ids",
|
||||
"vision_model.embeddings.position_ids",
|
||||
):
|
||||
return True
|
||||
|
||||
if has_minicpmv and name in ["visual_projection.weight"]:
|
||||
return True
|
||||
|
||||
if name.startswith("v") and not has_vision:
|
||||
return True
|
||||
|
||||
if name.startswith("t") and not has_text:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
if "mm_projector" in name:
|
||||
name = name.replace("model.mm_projector", "mm")
|
||||
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||
return name
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||||
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
|
||||
|
||||
if args.text_only and args.vision_only:
|
||||
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||
exit(1)
|
||||
|
||||
if args.use_f32:
|
||||
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
vocab = None
|
||||
tokens = None
|
||||
else:
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
tokens = [key for key in vocab]
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
# if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
# model = CLIPVisionModel.from_pretrained(dir_model)
|
||||
# processor = None
|
||||
# else:
|
||||
# model = CLIPModel.from_pretrained(dir_model)
|
||||
# processor = CLIPProcessor.from_pretrained(dir_model)
|
||||
|
||||
default_vision_config = {
|
||||
"hidden_size": 1152,
|
||||
"image_size": 980,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "idefics2",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 14,
|
||||
}
|
||||
vision_config = Idefics2VisionConfig(**default_vision_config)
|
||||
model = Idefics2VisionTransformer(vision_config)
|
||||
|
||||
processor = None
|
||||
# if model.attn_pool is not None:
|
||||
# model.attn_pool = torch.nn.Identity()
|
||||
|
||||
# model.blocks = model.blocks[:-1]
|
||||
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
|
||||
|
||||
fname_middle = None
|
||||
has_text_encoder = True
|
||||
has_vision_encoder = True
|
||||
has_minicpmv_projector = False
|
||||
if args.text_only:
|
||||
fname_middle = "text-"
|
||||
has_vision_encoder = False
|
||||
elif args.minicpmv_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_minicpmv_projector = True
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
else:
|
||||
fname_middle = ""
|
||||
|
||||
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
|
||||
fout.add_file_type(ftype)
|
||||
if args.text_only:
|
||||
fout.add_description("text-only CLIP model")
|
||||
elif args.vision_only and not has_minicpmv_projector:
|
||||
fout.add_description("vision-only CLIP model")
|
||||
elif has_minicpmv_projector:
|
||||
fout.add_description("image encoder for MiniCPM-V")
|
||||
# add projector type
|
||||
fout.add_string("clip.projector_type", "resampler")
|
||||
else:
|
||||
fout.add_description("two-tower CLIP model")
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", 448)
|
||||
fout.add_uint32("clip.vision.patch_size", 14)
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), 1152)
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
|
||||
fout.add_uint32("clip.vision.projection_dim", 0)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
block_count = 26
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
|
||||
if processor is not None:
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
||||
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
||||
else:
|
||||
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
||||
image_std = args.image_std if args.image_std is not None else default_image_std
|
||||
fout.add_array("clip.vision.image_mean", image_mean)
|
||||
fout.add_array("clip.vision.image_std", image_std)
|
||||
|
||||
use_gelu = True
|
||||
fout.add_bool("clip.use_gelu", use_gelu)
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (M,)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
||||
omega /= embed_dim / 2.
|
||||
omega = 1. / 10000 ** omega # (D/2,)
|
||||
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
|
||||
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
return emb
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
||||
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
if isinstance(grid_size, int):
|
||||
grid_h_size, grid_w_size = grid_size, grid_size
|
||||
else:
|
||||
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
|
||||
|
||||
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
||||
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0)
|
||||
|
||||
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token:
|
||||
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
def _replace_name_resampler(s, v):
|
||||
if re.match("resampler.pos_embed", s):
|
||||
return {
|
||||
s: v,
|
||||
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||
}
|
||||
if re.match("resampler.proj", s):
|
||||
return {
|
||||
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
||||
}
|
||||
if re.match("resampler.attn.in_proj_.*", s):
|
||||
return {
|
||||
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
|
||||
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
|
||||
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
|
||||
}
|
||||
return {s: v}
|
||||
|
||||
if has_minicpmv_projector:
|
||||
projector = torch.load(args.minicpmv_projector)
|
||||
new_state_dict = {}
|
||||
for k, v in projector.items():
|
||||
kvs = _replace_name_resampler(k, v)
|
||||
for nk, nv in kvs.items():
|
||||
new_state_dict[nk] = nv
|
||||
projector = new_state_dict
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
if ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
fout.add_tensor(name, data)
|
||||
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
|
||||
print("Projector tensors added\n")
|
||||
|
||||
def _replace_name(s, v):
|
||||
s = "vision_model." + s
|
||||
if re.match("vision_model.embeddings.position_embedding", s):
|
||||
v = v.unsqueeze(0)
|
||||
return {s: v}
|
||||
|
||||
return {s: v}
|
||||
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
kvs = _replace_name(k, v)
|
||||
for nk, nv in kvs.items():
|
||||
new_state_dict[nk] = nv
|
||||
state_dict = new_state_dict
|
||||
for name, data in state_dict.items():
|
||||
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
|
||||
# we don't need this
|
||||
print(f"skipping parameter: {name}")
|
||||
continue
|
||||
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
48
examples/llava/minicpmv-surgery.py
Normal file
48
examples/llava/minicpmv-surgery.py
Normal file
@ -0,0 +1,48 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
|
||||
checkpoint = model.state_dict()
|
||||
|
||||
# get a list of mm tensor names
|
||||
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
|
||||
|
||||
# store these tensors in a new dictionary and torch.save them
|
||||
projector = {name: checkpoint[name].float() for name in mm_tensors}
|
||||
torch.save(projector, f"{args.model}/minicpmv.projector")
|
||||
|
||||
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
|
||||
if len(clip_tensors) > 0:
|
||||
clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
|
||||
torch.save(clip, f"{args.model}/minicpmv.clip")
|
||||
|
||||
# added tokens should be removed to be able to convert Mistral models
|
||||
if os.path.exists(f"{args.model}/added_tokens.json"):
|
||||
with open(f"{args.model}/added_tokens.json", "w") as f:
|
||||
f.write("{}\n")
|
||||
|
||||
config = model.llm.config
|
||||
config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5"
|
||||
config.auto_map = {
|
||||
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
||||
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
||||
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
||||
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
||||
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
||||
}
|
||||
model.llm.save_pretrained(f"{args.model}/model")
|
||||
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
||||
tok.save_pretrained(f"{args.model}/model")
|
||||
# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py")
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")
|
145
examples/llava/minicpmv_wrapper.cpp
Normal file
145
examples/llava/minicpmv_wrapper.cpp
Normal file
@ -0,0 +1,145 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "minicpmv_wrapper.h"
|
||||
#include "llama.h"
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
struct llama_model * llava_init(gpt_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
struct minicpmv_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto ctx_llava = (struct minicpmv_context *)malloc(sizeof(minicpmv_context));
|
||||
|
||||
ctx_llava->ctx_llama = ctx_llama;
|
||||
ctx_llava->model = model;
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
void llava_free(struct minicpmv_context * ctx_llava) {
|
||||
llama_free(ctx_llava->ctx_llama);
|
||||
llama_free_model(ctx_llava->model);
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
std::pair<int, int> load_image_size = std::make_pair(448, 448);
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1, load_image_size);
|
||||
return ctx_clip;
|
||||
}
|
||||
|
||||
struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){
|
||||
auto ctx_clip = clip_init_context(params);
|
||||
auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str());
|
||||
if (ctx_clip) {
|
||||
clip_free(ctx_clip);
|
||||
ctx_clip = NULL;
|
||||
}
|
||||
return image_embed_and_slices;
|
||||
}
|
||||
|
||||
|
||||
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||
int N = (int) tokens.size();
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||
}
|
||||
|
||||
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
|
||||
void process_image(struct minicpmv_context * ctx_llava, std::vector<std::vector<struct llava_image_embed *>> image_embed_slices, gpt_params * params, int &n_past) {
|
||||
std::string system_prompt;
|
||||
|
||||
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices[0][0], params->n_batch, &n_past);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
if (image_embed_slices.size() > 1) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||
for (size_t i = 1; i < image_embed_slices.size(); ++i) {
|
||||
for (size_t j = 0; j < image_embed_slices[i].size(); ++j) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices[i][j], params->n_batch, &n_past);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
if (j == image_embed_slices[i].size() - 1) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||
|
||||
}
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
}
|
49
examples/llava/minicpmv_wrapper.h
Normal file
49
examples/llava/minicpmv_wrapper.h
Normal file
@ -0,0 +1,49 @@
|
||||
#ifndef MINICPMV_H
|
||||
#define MINICPMV_H
|
||||
|
||||
#include "common.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define MINICPMV_API __declspec(dllexport)
|
||||
# else
|
||||
# define MINICPMV_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define MINICPMV_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define MINICPMV_API
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct minicpmv_context {
|
||||
struct llama_context * ctx_llama = NULL;
|
||||
struct llama_model * model = NULL;
|
||||
};
|
||||
|
||||
MINICPMV_API struct llama_model * llava_init(gpt_params * params);
|
||||
MINICPMV_API struct minicpmv_context * llava_init_context(gpt_params * params, llama_model * model);
|
||||
MINICPMV_API void llava_free(struct minicpmv_context * ctx_llava);
|
||||
|
||||
MINICPMV_API struct clip_ctx * clip_init_context(gpt_params * params);
|
||||
MINICPMV_API struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname);
|
||||
|
||||
MINICPMV_API bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past);
|
||||
MINICPMV_API bool eval_id(struct llama_context * ctx_llama, int id, int * n_past);
|
||||
MINICPMV_API bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos);
|
||||
MINICPMV_API void process_image(struct minicpmv_context * ctx_llava, std::vector<std::vector<struct llava_image_embed *>> image_embed_slices, gpt_params * params, int &n_past);
|
||||
MINICPMV_API const char * sample(struct llama_sampling_context * ctx_sampling, struct llama_context * ctx_llama, int * n_past);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,3 +1,4 @@
|
||||
-r ../../requirements/requirements-convert-legacy-llama.txt
|
||||
pillow~=10.2.0
|
||||
torch~=2.1.1
|
||||
torchvision==0.16.2
|
Loading…
Reference in New Issue
Block a user