mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 04:24:30 +00:00
properly load all starcoder params
This commit is contained in:
parent
2683611944
commit
77c7ec179c
29
llama.cpp
29
llama.cpp
@ -193,6 +193,7 @@ enum llm_kv {
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_MAX_POSITION_EMBEDDINGS,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
@ -237,6 +238,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
||||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||||
{ LLM_KV_MAX_POSITION_EMBEDDINGS, "%s.max_position_embeddings" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
@ -937,7 +939,7 @@ struct llama_hparams {
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_positions = -1; // StarCoder
|
||||
uint32_t n_positions = 0; // StarCoder
|
||||
|
||||
float f_norm_eps = 1e-5;
|
||||
float f_norm_rms_eps = 1e-5;
|
||||
@ -985,13 +987,22 @@ struct llama_layer {
|
||||
struct ggml_tensor * wo;
|
||||
struct ggml_tensor * wqkv;
|
||||
|
||||
// attention bias
|
||||
struct ggml_tensor * bo;
|
||||
struct ggml_tensor * bqkv;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
struct ggml_tensor * ffn_norm_b;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1; // ffn_gate
|
||||
struct ggml_tensor * w2; // ffn_down
|
||||
struct ggml_tensor * w3; // ffn_up
|
||||
|
||||
// ff bias
|
||||
struct ggml_tensor * b2; // ffn_down
|
||||
struct ggml_tensor * b3; // ffn_up
|
||||
};
|
||||
|
||||
struct llama_kv_cache {
|
||||
@ -1654,6 +1665,7 @@ static void llm_load_hparams(
|
||||
GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
|
||||
GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
|
||||
GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
|
||||
GGUF_GET_KEY(ctx, hparams.n_positions, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_MAX_POSITION_EMBEDDINGS));
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv = hparams.n_head;
|
||||
@ -2247,11 +2259,20 @@ static void llm_load_tensors(
|
||||
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd_gqa}, backend_split);
|
||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split);
|
||||
layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {3*n_embd}, backend_split);
|
||||
|
||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||
|
||||
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
|
||||
layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
|
||||
|
||||
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
|
||||
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
vram_weights +=
|
||||
|
Loading…
Reference in New Issue
Block a user